Air Quality Updating and Screening Assessment for St Albans City and District Council

A report produced for St Albans City and District Council

> netcen/ED49386/Issue 1 July 2006

AEAT/ENV/R/2183

Title	Air Quality Updating and Screening Assessment for St Albans City and District Council			
Customer	St Albans City and District Council			
Customer reference				
Confidentiality, copyright and reproduction	Copyright AEA Technology plc All rights reserved Enquiries about copyright and reproduction should be addressed to the Commercial Manager, AEA Technology plc			
File reference	ED49386001			
Report number	AEAT/ENV/R/2183/Issue 1:			
Report status	Unrestricted			
	AEA Technology plc		-	
	Name	Signature	Date	
Author	Jeff Lampert	Cam J.	1.08.2006	
Reviewed by	Jim McGinlay		<u> </u>	
Approved by	Beth Conlan			

Executive Summary

The UK Government published its strategic policy framework for air quality management in 1995 establishing national strategies and policies on air quality which culminated in the Environment Act, 1995. The Air Quality Strategy¹ provides a framework for air quality control through air quality management and air quality standards. These and other air quality standards¹ and their objectives have been enacted through the Air Quality Regulations in 1997, 2000 and 2002². The Environment Act 1995 requires Local Authorities to undertake air quality reviews. In areas where an air quality objective is not anticipated to be met, Local Authorities are required to establish Air Quality Management Areas and implement action plans to improve air quality.

The first and second rounds of air quality review and assessments has now been completed for St Albans City and District Council. The Local Authority is required to proceed to the third round of review and assessment. This round of review and assessment is to be undertaken in two steps. The first step is an Updating and Screening Assessment, which updates the Stage 1 and 2 review and assessment previously undertaken for all pollutants identified in the Air Quality Regulations. Where a significant risk of exceedance is identified for a pollutant it will be necessary for the local authority to proceed to a Detailed Assessment, equivalent to the previous Stage 3 assessments. Where a local authority does not need to undertake a Detailed Assessment, a progress report is required instead.

The Updating and Screening Assessment should consider any new monitoring data, new sources or significant changes to existing sources (either locally or within neighbouring authorities), or any other local changes that may be significant. It should also carefully consider any relevant changes to public exposure e.g. new residential developments alongside busy roads etc, if these locations were not fully evaluated in previous Review and Assessment reports. It is not necessary to reassess the issues that have already been adequately considered in previous rounds.

This report is equivalent to an Updating and Screening Assessment for St Albans City and District as outlined in the Government's published guidance.

The general approach taken to this Updating and Screening Assessment was to:

- Identify the conclusions of the last round of review and assessment for each of the seven pollutants included in the air quality regulations;
- Identify significant sources of emissions to air for the seven pollutants included in the air quality regulations, including major roads and industrial plant;
- Identify new sources not previously considered in the first two rounds of review and assessment;
- Identify any sources for which emissions have changed significantly since the last round of review and assessment;
- Identify and interpret the significance of air quality monitoring data made available since the last round of review and assessment;
- Assess the risk of exceedances of the air quality objectives in locations where relative public exposure may exist using screening models and nomograms; and
- Where necessary, identify locations and pollutants for which further detailed assessment of air quality will be required.

¹ Refers to standards recommended by the Expert Panel on Air Quality Standards. Recommended standards are set purely with regard to scientific and medical evidence on the effects of the particular pollutants on health, at levels at which risks to public health, including vulnerable groups, are very small or regarded as negligible.

What are the conclusions of this report for St Albans City and District Council?

Carbon monoxide

There are no roads in St Albans City and District which can be classified as 'very busy' according to the criteria in the guidance. There are no industrial processes which are significant sources of carbon monoxide. Exceedances of the air quality objective for carbon monoxide are therefore unlikely.

A detailed assessment is not required for carbon monoxide in St Albans City and District.

Benzene

There are no roads in St Albans City and District, which can be classified as 'very busy' according to the criteria in the guidance. There are no petrol stations with a throughput greater than 2 million litres and with relevant exposure within 10m of the pumps.

A detailed assessment is not required for benzene in St Albans City and District.

1,3-Butadiene

Estimated background concentrations and data from national monitoring stations indicate that the objective for 1,3-butadiene is likely to be achieved by the end of 2003. There are no industrial processes, current or proposed, in St Albans City and District, which have the potential to emit 1,3-butadiene.

A detailed assessment is not required for 1,3-butadiene in St Albans City and District.

Lead

Emissions of lead from industrial processes in St Albans City and District are likely to be very small and it is unlikely they will cause exceedances of the air quality objectives for lead in 2004 and 2008.

A detailed assessment is not required for lead in St Albans City and District.

Nitrogen dioxide

No roads or busy junctions were identified using DMRB where the objectives were likely to be exceeded.

 NO_2 concentrations in 2005 measured using diffusion tubes were above the annual mean limit objective of 40 $\mu gm^{\text{-3}}$ at six sites:

SA 07 Waterdale Bricket Wood (M1) SA 15 Peahen PH Holywell Hill St Albans SA 22 Lybury Lane Redbourn (M1) SA 30 Smug Oak Lane Bricket Wood (M25) SA 31 Radlett Road (M25) SA 33 Mount Drive Park Street

The conclusions for these areas are as follows:

- Diffusion tubes SA 15, SA 30 and SA 31 are within existing AQMAs.
- The area of Lybury Lane Redbourn (SA 22) was considered in the 2004 Detailed Assessment and it was concluded that there were no relevant receptors in the areas of exceedence and that no further action was necessary.
- The Bricket Wood Area (SA 07) is within a revoked AQMA. The area was remodelled for the Stage 4 Assessment. This assessment concluded that no exceedances were likely at relevant locations in Bricket Wood.
- > Mount Drive/Park Street (SA 33); This is a kerbside site and the nearest receptor is 36m away. Using the factor of 0.75 to as given in the Air Quality Review and Assessment website the concentration at the nearest building facade is estimated to be $31.5 \,\mu gm^{-3}$.

A detailed assessment is not required for nitrogen dioxide in St Albans City and District.

Sulphur dioxide

There are no significant industrial or domestic sources of sulphur dioxide in St Albans City and District.

A detailed assessment is not required for sulphur dioxide.

PM₁₀

The DMRB screening tool indicates that the annual mean concentration and the daily mean objectives for 2004 will have been achieved. The projected 2010 annual mean concentration and daily mean objectives are likely to be widely exceeded in that year.

A detailed assessment is not required for PM_{10} .

Recommendations

This updating and screening assessment for St Albans City and District Council has concluded that all the objectives in the Air Quality Regulations for England will be met by the relevant dates at most locations in St Albans City and District.

The EU annual average limit value (Stage 2) for PM_{10} may be exceeded at some locations within the District, close to busy roads and junctions in 2010.

Maps reproduced within this document

All maps in this document are reproduced from Ordnance Survey material with permission of Her Majesty's Stationery Office © Crown Copyright. Unauthorised reproduction infringes Crown copyright and may lead to prosecution or civil proceedings. St Albans City and District Council Licence number LA079227.

Acronyms and definitions used in this report

- Annual Average Daily Traffic Flow AADTF
- AQMA Air Quality Management Area
- AURN Automatic Urban Network (defra funded network)
- CO Carbon monoxide
- DETR Department of the Environment Transport and the Regions (now defra)
- Department of the Environment, Food and Rural Affairs defra
- DMRB Design Manual for Roads and Bridges
- Expert Panel on Air Quality Standards (UK panel) EPAQS
- EU European Union
- Geographical Information System GIS
- HA **Highways Agency**
- kerbside 0 to 1 m from the kerb
- Limit Value An EU definition for an air quality standard of a pollutant listed in the air quality directives MW_{th}
 - Mega Watts (thermal)
- NAEI National Atmospheric Emissions Inventory produced by netcen on behalf of defra
- NO_2 Nitrogen dioxide
- NO_x Oxides of nitrogen
- National Road Traffic Forecast NRTF
- ppb parts per billion
- receptor In the context of this study, the relevant location where air quality is assessed or predicted (for example, houses, hospitals and schools)
- roadside 1 to 5 m from the kerb
- Sulphur dioxide SO_2
- USA Updating screening assessment

TEMPRO A piece of software produced by the defra used to forecast traffic flow increases

Contents

1		Introduction to the Updating and Screening	_
As	sess	sment	1
	1.1 1.2 1.3 1.4 1.5	PURPOSE OF THE UPDATING AND SCREENING ASSESSMENT OVERVIEW OF APPROACH TAKEN RELEVANT DEFRA DOCUMENTATION USED POLLUTANTS CONSIDERED IN THIS REPORT STRUCTURE OF THE REPORT	1 1 2 2
2		Information used to support this assessment	4
3 Ma	 2.1 2.2 2.3 2.4 2.5 	CONCLUSIONS FROM THE PREVIOUS ROUNDS OF REVIEW AND ASSESSMENT OF AIR QUALITY FOR ST ALBANS CITY AND DISTRICT COUNCIL PROPOSED DEVELOPMENTS WHICH MAY AFFECT AIR QUALITY 2.2.1 Industry 2.2.2 Housing and redevelopment 2.2.3 Road Network changes ROAD TRAFFIC DATA 2.3.1 Fraction of HGVs 2.3.2 Base year for traffic 2.3.3 Traffic growth PART A AND B PROCESSES AMBIENT MONITORING 2.5.1 Diffusion tubes 2.5.2 Continuous monitoring Updating and Screening Assessment for Carbon tide	× 4 4 4 4 5 5 5 5 5 5 5 6 8
	3.1 3.2 3.3 3.4 3.5	THE NATIONAL PERSPECTIVE STANDARD AND OBJECTIVE FOR CARBON MONOXIDE CONCLUSIONS OF THE SECOND ROUND OF REVIEW AND ASSESSMENT FOR CARBON MONOXIDE SCREENING ASSESSMENT 3.4.1 Screening Assessment Checklist 3.4.2 Background concentrations for carbon monoxide 3.4.3 Automatic Monitoring CONCLUSIONS FOR CARBON MONOXIDE CONCENTRATIONS IN ST ALBANS CITY AND DISTRICT	8 8 9 9
4		Updating and Screening Assessment for Benzene	10
	4.1	THE NATIONAL PERSPECTIVE	10

4.1	THE NA	TIONAL PERSPECTIVE	10
4.2	STANDA	ARD AND OBJECTIVE FOR BENZENE	10
4.3	CONCLU	JSIONS OF THE SECOND ROUND OF REVIEW AND ASSESSMENT FOR BENZE	ENE10
4.4	SCREEN	ING ASSESSMENT OF BENZENE	11
	4.4.1	Screening Assessment Checklist	11
	4.4.2	Background concentrations for benzene	11
	4.4.3	Benzene Monitoring	11
	4.4.4	Screening assessment of Fuel Storage Depots	11
4.5	CONCLU	JSIONS FOR BENZENE CONCENTRATIONS ST ALBANS CITY AND DISTRICT	12

13

5 Updating and Screening Assessment for 1,3-Butadiene

5.1	THE NATIONAL PERSPECTIVE	13
5.2	STANDARD AND OBJECTIVE FOR 1,3-BUTADIENE	13
5.3	CONCLUSIONS OF THE SECOND ROUND OF REVIEW AND ASSESSMENT FOR 1,3-	
	BUTADIENE	13
5.4	SCREENING ASSESSMENT OF 1,3-BUTADIENE	13
	5.4.1 Screening Assessment Checklist	13
	5.4.2 Background Concentrations for 1,3-Butadiene	14
5.5	•	
	DISTRICT COUNCIL AREA	14

6 Updating and Screening Assessment for Lead 15

6.1	THE NATIONAL PERSPECTIVE	15
6.2	STANDARD AND OBJECTIVE FOR LEAD	15
6.3	CONCLUSIONS OF THE SECOND ROUND OF REVIEW AND ASSESSMENT FOR LEAD	15
6.4	SCREENING ASSESSMENT OF LEAD	15
6.5	CONCLUSIONS FOR LEAD CONCENTRATIONS IN ST ALBANS CITY AND DISTRICT	16
0.5	CONCLUSIONS FOR LEAD CONCENTRATIONS IN STALBANS CITTAND DISTRICT	10

7 Updating and Screening Assessment for Nitrogen Dioxide 17

7.1	INTRODUCTION	17
7.2	STANDARDS AND OBJECTIVES FOR NITROGEN DIOXIDE	17
7.3	CONCLUSIONS OF THE SECOND ROUND OF REVIEW AND ASSESSMENT FOR	
	NITROGEN DIOXIDE	17
7.4	SCREENING ASSESSMENT OF NITROGEN DIOXIDE	19
7.5	BACKGROUND CONCENTRATIONS FOR NITROGEN DIOXIDE	19
7.6	SCREENING ASSESSMENT OF MONITORING DATA	20
	7.6.1 Diffusion tube monitoring	20
	7.6.2 Bias correction of diffusion tube data	20
	7.6.3 Diffusion tube analysis	21
	7.6.4 Monitoring within AQMAs	21
	7.6.5 Automatic Monitoring	21
7.7	SCREENING ASSESSMENT OF ROAD TRAFFIC SOURCES	22
	7.7.1 Busy Junctions	24
7.8	CONCLUSIONS FOR NITROGEN DIOXIDE CONCENTRATIONS IN ST ALBANS CITY	AND
	DISTRICT	25

8 Updating and Screening Assessment for Sulphur Dioxide 26

8.1 8.2	INTRODUCTION STANDARD AND OBJECTIVE FOR SULPHUR DIOXIDE	26 26
8.3	CONCLUSIONS OF THE FIRST ROUND OF REVIEW AND ASSESSMENT FOR SULPHUR DIOXIDE	26
8.4	SCREENING ASSESSMENT OF SULPHUR DIOXIDE	26
8.5	BACKGROUND CONCENTRATIONS FOR SULPHUR DIOXIDE	27
8.6	SCREENING ASSESSMENT OF MONITORING DATA	27
8.7	CONCLUSIONS FOR SULPHUR DIOXIDE CONCENTRATIONS IN ST ALBANS CITY AND)
	DISTRICT	28

9 Updating and Screening Assessment for PM₁₀ 29

9.1 THE NATIONAL PERSPECTIVE

29

10		Conclusions	35
	9.8	CONCLUSIONS FOR PM_{10} CONCENTRATIONS IN ST ALBANS CITY AND DISTRICT	34
		9.7.1 Busy Junctions	33
	9.7	SCREENING ASSESSMENT OF ROAD TRAFFIC SOURCES	31
	9.6	SCREENING ASSESSMENT OF MONITORING DATA	31
	9.5	BACKGROUND CONCENTRATIONS FOR PM ₁₀	31
	9.4	SCREENING ASSESSMENT OF PM ₁₀	30
	9.3	CONCLUSIONS OF THE FIRST ROUNDS OF REVIEW AND ASSESSMENT FOR PM ₁₀	29
	9.2	STANDARD AND OBJECTIVE FOR PM10	29

10.1	CARBON MONOXIDE	35
10.2	BENZENE	35
10.3	1,3-BUTADIENE	35
10.4	LEAD 35	
10.5	NITROGEN DIOXIDE	35
10.6	SULPHUR DIOXIDE	36
10.7	PM ₁₀ 36	
10.8	SUMMARY AND RECOMMENDATIONS	36

11 The UK Air Quality Strategy

	11.1.1	National Air Quality Standards	38
	11.1.2	Timescales to achieve the objectives for the pollutants in Air Quality	Strategy40
11.2	AIR QUA	LITY REVIEWS – THE APPROACHES AND EXPECTED OUTCOMES	40
11.3	LOCATIO	INS THAT THE REVIEW AND ASSESSMENT MUST CONCENTRATE ON	41

12 References

Appen	dices
-------	-------

44

43

38

- Appendix 1 Road traffic data
- Appendix 2 Monitoring data
- Appendix 3 Emission Data
- Appendix 4 Description of Selected Models
- Appendix 5 AQMAs in St Albans City and District

1 Introduction to the Updating and Screening Assessment

This section outlines the purpose of this Updating and Screening Assessment and the scope of the assessment.

1.1 PURPOSE OF THE UPDATING AND SCREENING ASSESSMENT

The first and second rounds of air quality reviews and assessments are now complete and all local authorities should have completed all necessary stages. Where the likelihood of exceedances of air quality objectives have been identified in areas of significant public exposure, an air quality management area should have been declared, followed by a further (formerly Stage 4) review and assessment, and the formulation of an action plan to eliminate exceedances. Local authorities are now required to proceed to the third round of review and assessment in which sources of emissions to air are reassessed to identify whether the situation has changed since the first round of review and assessment, and if so, what impact this may have on predicted exceedances of the air quality objectives. Such changes might include significant traffic growth on a major road, which had not been foreseen, construction of a new industrial plant with emissions to air, or significant changes in the emissions of an existing plant.

The third round of review and assessment is to be undertaken in two steps. The first step is an Updating and Screening Assessment, which updates the Stage 1 and 2 Updating and Screening assessments previously undertaken for all pollutants identified in the Air Quality Regulations. Where a significant risk of exceedance is identified for a pollutant it will be necessary for the local authority to proceed to a Detailed Assessment, equivalent to the previous Stage 3 assessments. Where a local authority does not need to undertake a Detailed Assessment, a progress report is required instead.

1.2 OVERVIEW OF APPROACH TAKEN

The general approach taken to this Updating and Screening Assessment was to:

- > Identify the conclusions of the last round of review and assessment for each of the seven pollutants included in the air quality regulations;
- Identify significant sources of emissions to air for the seven pollutants included in the air quality regulations, including major roads and industrial plant;
- > Identify new sources not previously considered in the first round of review and assessment;
- Identify any sources for which emissions have changed significantly since the last round of review and assessment;
- Identify and interpret the significance of air quality monitoring data made available since the last round of review and assessment;
- Assess the risk of exceedances of the air quality objectives in locations where relative public exposure may exist using screening models and nomograms; and
- Where necessary, identify locations and pollutants for which further detailed assessment of air quality will be required.

1.3 RELEVANT DEFRA DOCUMENTATION USED

This report takes into account the guidance in LAQM.TG $(03)^1$ published February 2003 and the LAQM TG(03) update published January 2006.

1.4 POLLUTANTS CONSIDERED IN THIS REPORT

All pollutants included in the Air Quality Regulations^2 for the purposes of Review and Assessment have been considered in this report.

1.5 STRUCTURE OF THE REPORT

The report is structured as follows:

Section 1 summarises the conclusions of air quality review and assessment work to date, the aims of the updating and screening assessment, the approach adopted for the assessment, as well as relevant background information on the St Albans City and District and relevant emissions-to-air sources;

Section 2 identifies data used in support of this assessment and highlights significant changes in emissions to air within the District since the first round of review and assessment;

Sections 3-9 present the review and assessment for each of the seven pollutants included in the Air Quality Regulations;

Section 10 presents conclusions and recommendations for further work, where required, for each of the seven pollutants;

The Objectives of the Air Quality strategy are shown below in Table 1.1. Further details of the Air Quality Strategy are given in Section 13.

Table 1.1 Objectives included in the Air Quality Regulations 2000 and (Amendment)	
Regulations 2002 for the purpose of Local Air Quality Management	

ſ

_			
Pollutant	Air Quality Objective		Date to be
	Concentration	Measured as	achieved by
Benzene			
All authorities	16.25 μg/m³	running annual mean	31.12.2003
Authorities in England and Wales only	5.00 μg/m³	annual mean	31.12.2010
Authorities in Scotland and Northern Ireland only ^a	3.25 μg/m ³	running annual mean	31.12.2010
1,3-Butadiene	2.25 μg/m ³	running annual mean	31.12.2003
Carbon monoxide Authorities in England, Wales and Northern Ireland only ^a	10.0 mg/m ³	maximum daily running 8-hour mean	31.12.2003
Authorities in Scotland only	10.0 mg/m ³	running 8-hour mean	31.12.2003
Lead	0.5 μg/m ³	annual mean	31.12.2004
	$0.25 \mu g/m^3$	annual mean	31.12.2008
Nitrogen dioxide ^b	200 µg/m ³ not to be exceeded more than 18 times a year	1 hour mean	31.12.2005
	40 μg/m ³	annual mean	31.12.2005
Particles (PM ₁₀) (gravimetric) ^c All authorities	50 μ g/m ³ not to be exceeded more than 35 times a year	24 hour mean	31.12.2004
	40 μg/m³	annual mean	31.12.2004
Authorities in Scotland only ^d	50 μg/m ³ not to be exceeded more than 7 times a year	24 hour mean	31.12.2010
	18 μg/m ³	annual mean	31.12.2010
Sulphur dioxide	350 μg/m ³ not to be exceeded more than 24 times a year	1 hour mean	31.12.2004
	$125 \ \mu\text{g/m}^3$ not to be exceeded more than 3 times a year	24 hour mean	31.12.2004
	266 μg/m ³ not to be exceeded more than 35 times a year	15 minute mean	31.12.2005

a. Air Quality (Northern Ireland) Regulations 2003.
b. The objectives for nitrogen dioxide are provisional.
c. Measured using the European gravimetric transfer sampler or equivalent.
d. These 2010 Air Quality Objectives for PM₁₀ apply in Scotland only, as set out in the Air Quality (Scotland) Amendment Regulations 2002.

2 Information used to support this assessment

This section lists the key information used in this review and assessment.

2.1 CONCLUSIONS FROM THE PREVIOUS ROUNDS OF REVIEW AND ASSESSMENT OF AIR QUALITY FOR ST ALBANS CITY AND DISTRICT COUNCIL

St Albans City and District Council has completed the following review and assessments of air quality to date:

Stage 3 Review and Assessment Stage 4 Review and Assessment Updating and Screening Assessment Air Quality Action Plan Detailed Assessment Progress Report (June 2000) (January 2003) (July 2003) (December 2003) (March 2004) (August 2005)

The latest detailed assessment predicted that the UK annual average and hourly average objectives for nitrogen dioxide in 2005 would be exceeded at relevant receptor in the following areas:

- > Isolated property next to the A4147, between the M1 and M10 south of M1 junction 7
- > Peahen crossroads, central St Albans.

St Albans City and District Council currently has declared three AQMAs encompassing residential properties close in London Road St Albans, Hemel Hempstead Road and Frogmore (Appendix 3).

2.2 PROPOSED DEVELOPMENTS WHICH MAY AFFECT AIR QUALITY

Any new developments in the local authority area, or outside the LA that may impact on local air quality need to be considered. Key considerations should include the following:

2.2.1 Industry

There have been two new Part B industrial processes authorised in the St Albans City & District since the last Updating and Screening Assessment in July 2003. These include two new oil burners. The new processes were considered in the recent Progress Report and are considered not to lead to significant emission of air pollutants. The St Albans Hospital incinerator has closed since the Updating and Screening Assessment. There are therefore believed to be no new processes that would be significant to air quality.

2.2.2 Housing and redevelopment

There have been no new housing, commercial or public developments in St Albans since July 2003 which are likely to have a significant impact on air quality due to significantly changed traffic flows.

2.2.3 Road Network changes

No new roads have been constructed or proposed since the previous Updating and Screening Assessment (USA) in July 2003.

2.3 ROAD TRAFFIC DATA

This section summarises the information used in this report; more detailed information is given in Appendix 2. Appendix 2 lists the locations of the traffic flow and speed measurement points, flow and speed data and other relevant traffic statistics.

Data were collated from a range of sources, including:

- > data provided by Hertfordshire County Council 2005
- data held in the National Atmospheric Emissions Inventory (NAEI, 2004) where no other data were available from either St Albans City and District Council or the Highways Agency.

Where no average speed data were available, estimated speeds based on speed limits were used near receptors and junctions. Speeds slower than the national speed limits have been assigned to sections of roads in areas close to junctions.

2.3.1 Fraction of HGVs

Where percentages of cars, LDVs, HGVs and buses were not provided by St Albans City and District Council, the percentage of HDVs was estimated.

2.3.2 Base year for traffic

The base year for the traffic flows was 2004 (NAEI) and 2005 (Hertfordshire County Council).

2.3.3 Traffic growth

Traffic growth figures were based on mid-range TEMPRO factors for St Albans City and District.

2.4 PART A AND B PROCESSES

There are no Part A and 17 Part B Industrial processes in St Albans City and District. A full list is given in Appendix 3.

2.5 AMBIENT MONITORING

2.5.1 Diffusion tubes

St Albans City and District Council carry out monitoring of nitrogen dioxide by diffusion tubes at 35 locations. The tubes used are analysed by Gradko Ltd using the 20% TEA in water method. The locations of the monitoring sites are shown in Figure 1.1. Full details of the type, locations, and concentrations recorded by the monitors are given in Appendix 1.

AEAT/ENV/R/2183

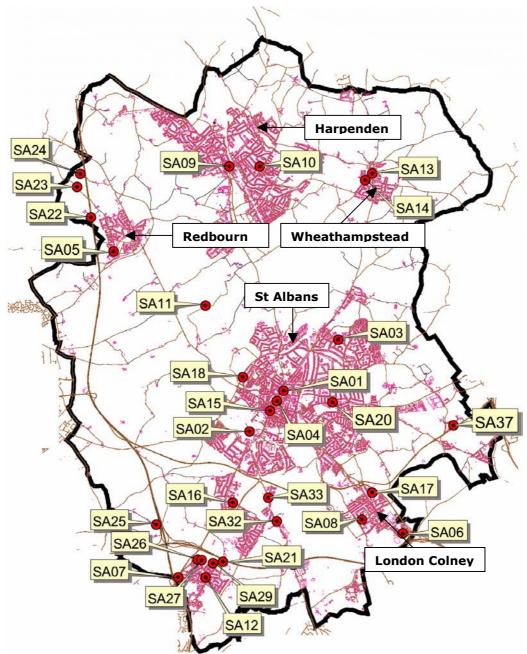
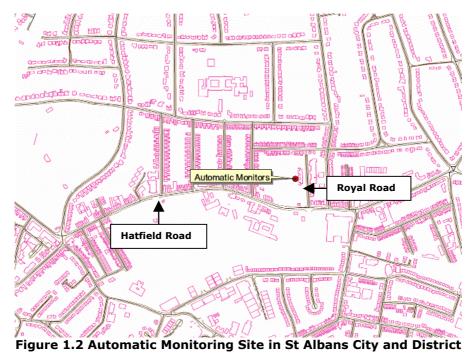



Figure 1.1 Diffusion Tube Monitoring Sites in St Albans City and District

2.5.2 Continuous monitoring

Continuous monitoring of NO₂, PM₁₀, CO and SO₂ is undertaken at a monitoring site located at Fleetville Community Centre, Royal Road, St Albans. This is an urban background site approximately 100m from the A1057. The location of the monitoring site is shown in Figure 1.2.

© Crown copyright. All rights reserved LA079227. 2006.

3 Updating and Screening Assessment for Carbon Monoxide

3.1 THE NATIONAL PERSPECTIVE

The main source of carbon monoxide in the United Kingdom is road transport, which accounted for 49% of total releases in 2003. Over the period 1970-2003 emissions decreased by 78% reflecting significant reduction in emissions from road transport, agricultural field burning and the domestic sector.

3.2 STANDARD AND OBJECTIVE FOR CARBON MONOXIDE

The Government and the Devolved Administrations adopted an 8-hour running mean concentration of 11.6 mgm⁻³ as the air quality standard for carbon monoxide. The new objective has been set at a slightly tighter level of 10 mgm⁻³ as a maximum daily running 8-hour mean concentration to have been achieved by the end of 2003, bringing it into line with the second Air Quality Daughter Directive limit value.

3.3 CONCLUSIONS OF THE SECOND ROUND OF REVIEW AND ASSESSMENT FOR CARBON MONOXIDE

The following conclusions were given for carbon monoxide in the earlier Updating and Screening Assessment for St Albans City and District Council:

- There are no roads in St Albans City and District which can be classified as 'very busy' according to the criteria in the guidance which have receptors within 10m of the kerbside ;
- Background and monitored concentrations in the District are very low compared with the Objective Level for 2003;
- St Albans City and District Council is not required to carry out a Detailed Review and Assessment for carbon monoxide;

3.4 SCREENING ASSESSMENT

3.4.1 Screening Assessment Checklist

The sources, data or locations which require assessment according to Technical Guidance LAQM TG(03) are considered in Table 3.1.

Checklist Item (from Box 2.2 in LAQM.TG(03) update)	Creening Assessment of Carbon Monoxide Updating and Screening Assessment
Monitoring data	Carbon monoxide is currently monitored in St Albans City and District at the Fleetville Community Centre (Section 3.4.3).
Very busy roads or junctions in built-up areas	Traffic flow data were supplied by St Albans City and District Council and taken from the NAEI. Based on these data, there are roads and Junctions in St Albans City and District which can be classified as 'very busy' according to the criteria in the guidance but none have relevant receptors within 10m

Table 3.1 Screening Assessment of Carbon Monoxide

3.4.2 Background concentrations for carbon monoxide

The average background carbon monoxide concentration in St Albans City and District, estimated from the UK background maps⁷ was 0.38 mgm^{-3} in (2001 estimate) with a maximum concentration of 0.43 mgm^{-3} close to the London Road.

3.4.3 Automatic Monitoring

Carbon dioxide was monitored in St Albans City and District during 2005. The time series plot of hourly average CO concentrations is shown in Figure 3.1. The average concentration for 2005 recorded at the Fleetville site was 0.3 mgm⁻³ with a maximum concentration site of 3.1 mgm⁻³ The running 8 hour mean greater 10 mgm⁻³ air quality objective was not exceeded on 2005.

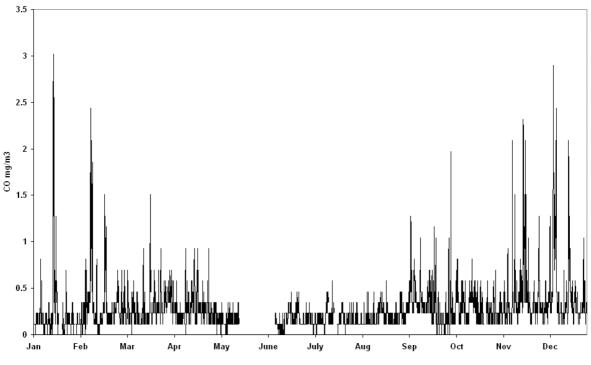


Figure 3.1 Time series of hourly average CO concentrations Fleetville 2005

3.5 CONCLUSIONS FOR CARBON MONOXIDE CONCENTRATIONS IN ST ALBANS CITY AND DISTRICT

Carbon dioxide was monitored in St Albans City and District during 2005 and monitored concentrations were well below the objective level. There are no roads in St Albans City and District which can be classified as 'very busy' according to the criteria in the guidance with relevant receptors within 10m.

A detailed assessment is not required for carbon monoxide in the St Albans City and District.

4 Updating and Screening Assessment for Benzene

4.1 THE NATIONAL PERSPECTIVE

The main sources of benzene emissions in the UK are petrol-engined vehicles, petrol refining, and the distribution and uncontrolled emissions from petrol station forecourts without vapour recovery systems. A number of policy measures already in place, or planned for future years, will continue to reduce emissions of benzene. Since January 2000, EU legislation has reduced the maximum benzene content of petrol to 1%, from a previous upper limit of 5%. The European Auto-Oil programme will further reduce emissions for cars and light-duty vehicles, and emissions of benzene from the storage and distribution of petrol are controlled by vapour recovery systems. Forecasts based on national mapping suggest that the policy measures currently in place will achieve the 2003 objective at all urban background and roadside/kerbside locations. Whilst the 2010 objectives are expected to be met at all urban background, and most roadside locations, there is the possibility for some remaining exceedances, which will require additional measures at a local level.

4.2 STANDARD AND OBJECTIVE FOR BENZENE

The Government and the Devolved Administrations adopted a running annual mean concentration of 16.25 μ gm⁻³ as the air quality standard for benzene, with an objective for the standard to have been achieved by the end of 2003. However, in light of the health advice from EPAQS and the Department of Health's Committee on Carcinogenicity of Chemicals in Food, Consumer Products and the Environment (COC) to reduce concentrations of benzene in air to as low a level as possible, additional tighter objectives have also been set. The additional objective is for an annual mean of 5 μ gm⁻³ to be achieved by the end of 2010 in England and Wales. In Scotland and Northern Ireland, a running annual mean of 3.25 μ gm⁻³ has been adopted as an additional objective, to be achieved by the end of 2010.

4.3 CONCLUSIONS OF THE SECOND ROUND OF REVIEW AND ASSESSMENT FOR BENZENE

The following conclusions were given for benzene in the earlier Updating and Screening Assessment for St Albans City and District Council.

- There are no petrol stations with a throughput greater than 2 million litres on or near busy roads and with relevant exposure within 10m of the pumps;
- There are no major fuel storage depots in the district. However, Buncefield storage depot, located mainly in the adjoining Dacorum district, is at the boundary with St Albans City and District. A few isolated houses are located in St Albans City and District near the depot which is within 1 km of the M1.

netcen considers that annual concentrations of benzene in St Albans are likely to be below the objectives but recommends further benzene monitoring at closest receptors around the storage depot.

St Albans City and District Council is not required to carry out a Detailed Review and Assessment for benzene.

4.4 SCREENING ASSESSMENT OF BENZENE

4.4.1 Screening Assessment Checklist

The sources, data or locations which require assessment according to Technical Guidance LAQM TG(03) are considered in Table 4.1.

Checklist Item (from Box 3.2 in TG(03) update)	Updating and Screening Assessment				
Monitoring data outside an AQMA	A benzene monitoring study was undertaken in 2004 -2005 (Section 4.4.3)				
Monitoring data within an AQMA	No monitoring of Benzene has been undertaken with the currently declared AQMAs.				
Very busy roads or junctions in built up areas	Traffic flow data were supplied by St Albans City and District Council and also taken from the NAEI. Based on these data, there are no roads or junctions in St Albans City and District which can be classified as 'very busy' according to the LAQM TG(03) updated checklist with relevant receptors within 10m.				
New industrial sources.	There are no new industrial sources established since the last Review and Assessment with the potential to emit benzene. There				
Industrial sources with substantially increased emissions, or new relevant exposure	are no industrial sources in St Albans City and District with increased emissions since the last Review and Assessment.				
Petrol stations	There are no petrol stations meeting the criteria in the LAQM TG(03) updated checklist which have not been considered in previous reports.				
Major fuel storage depots (petrol only)	There is a major fuel storage depot close the boundary on St Albans City and District Section (Section 4.4.4).				

Table 4.1 Screening Assessment of Benzene

4.4.2 Background concentrations for benzene

The average background benzene concentration in St Albans City and District, estimated from the UK background maps⁷ was 0.52 μ gm⁻³ in 2003 with a maximum concentration of 0.68 μ gm^{-3.} The estimated average background benzene concentration was 0.40 μ gm⁻³ in 2010 with a maximum concentration of 0.51 μ gm^{-3.} The maximum concentration was estimated close to the A1057 Hatfield Road.

4.4.3 Benzene Monitoring

Monitoring of Benzene was undertaken for six months from September 2004 at six sites in St Albans. A table of monthly average concentrations is shown in Appendix 1. The maximum monthly concentration recorded was 2.1 μ gm⁻³ at a roadside site in Holywell Hill ST Albans. The results indicate that the 2010 objective level of 5 μ gm⁻³ is unlikely to be exceeded at any locations in St Albans City and District.

4.4.4 Screening assessment of Fuel Storage Depots

There is a major fuel storage depot at Buncefield^{*2} in neighbouring Dacorum Borough. Dacorum holds no benzene emission data for the Buncefield terminal. It is likely that any emissions from the site are likely to be discharges at low height with a mixture of vented and fugitive emissions. Consequently, any contribution to ambient benzene concentration is likely to be most significant in the vicinity of the storage terminal. Measurements of benzene by diffusion tube at Cherry Tree Farm, located within 1 km of the storage terminal in St Albans City and District, indicated a monthly maximum concentration of 1.2 μ gm⁻³ between August 2004 and January 2005. The

 $^{^2}$ The Buncefield depot was destroyed in a major explosion in December 2005 and the future of this facility is uncertain at the time of this report.

monthly mean concentrations determined at Cherry Tree Farm, which is close to the depot, suggest that annual concentrations are likely to be below the 2003 and 2010 objectives for benzene. However, it should be noted that there are sites with relevant exposure in St Albans City and District within about 200 m of the depot and continued monitoring at such receptors would be recommended.

4.5 CONCLUSIONS FOR BENZENE CONCENTRATIONS ST ALBANS CITY AND DISTRICT

There are no very busy roads or junctions in St Albans with relevant exposure within the criteria specified in the guidance that have not been considered in previous rounds of Review and Assessment

There are no petrol stations with a throughput greater than 2 million litres adjacent to busy roads.

There are no industrial processes within the district which are considered to be significant emitters of benzene. A fuel storage depot is located in Dacorum district on the outskirts of Hemel Hempstead at the western boundary of St Albans City and District. Annual concentrations of benzene in St Albans are likely to be below the objectives but further benzene monitoring at receptors around the Buncefield storage depot is recommended.

St Albans City and District Council is not required to carry out a Detailed Review and Assessment for benzene.

5 Updating and Screening Assessment for 1,3-Butadiene

5.1 THE NATIONAL PERSPECTIVE

The main source of 1,3-butadiene in the United Kingdom is emissions from motor vehicle exhausts. 1,3-butadiene is also an important industrial chemical and is handled in bulk at a small number of industrial premises. Maximum running annual mean concentrations of 1,3-butadiene measured at all urban background/centre and roadside locations in the national network are already well below the 2003 objective of 2.25 μ gm⁻³. The increasing numbers of vehicles equipped with three way catalysts will significantly reduce emissions of 1,3-butadiene in future years. Recently agreed further reductions in vehicle emissions and improvements to fuel quality, are expected to further reduce emissions of 1,3-butadiene from vehicle exhausts. These measures are expected to deliver the air quality objective by the end of 2003.

5.2 STANDARD AND OBJECTIVE FOR 1,3-BUTADIENE

The Government and the Devolved Administrations adopted a maximum running annual mean concentration of 2.25 μ gm⁻³ as an air quality standard for 1,3-butadiene. The objective is for the standard to have been achieved by the end of 2003.

5.3 CONCLUSIONS OF THE SECOND ROUND OF REVIEW AND ASSESSMENT FOR 1,3-BUTADIENE

The following conclusions were given for 1,3-butadiene in the earlier Updating and Screening Assessment for St Albans City and District Council:

- Estimated background concentrations and data from national monitoring stations indicate that the objective for 1,3-butadiene is likely to be achieved by the end of 2003;
- There are no industrial processes in the District, or close to its boundary, which have the potential to emit significant quantities of benzene;

St Albans City and District Council is not required to carry out a Detailed Review and Assessment for 1,3-butadiene.

5.4 SCREENING ASSESSMENT OF 1,3-BUTADIENE

5.4.1 Screening Assessment Checklist

The sources, data or locations which require assessment according to Technical Guidance LAQM TG(03) are considered in Table 5.1.

Checklist Item (from Box 4.2 in TG(03) update)	Updating and Screening Assessment			
Monitoring data	1,3-butadiene is not currently monitored in St Albans City and District			
New industrial sources.	There are no new industrial sources established since the last Review and Assessment with the potential to emit 1,3-butadiene.			
Industrial sources with substantially increased emissions, or new relevant exposure	There are no industrial sources in St Albans City and District with increased emissions since the last Review and Assessment.			

Table 5	.1	S	cr	eening	Α	ssessn	nent	of	1,3-butadiene
1						-		-	

5.4.2 Background Concentrations for 1,3-Butadiene The average background 1,3-butadiene concentration in St Albans City and District, estimated from the UK background maps⁷ was $0.21 \,\mu \text{gm}^{-3}$ in 2003 with a maximum concentration of $0.26 \,\mu \text{gm}^{-3}$. The maximum concentration was estimated at Chiswell Green close to the M10.

5.5 CONCLUSIONS FOR 1,3-BUTADIENE CONCENTRATIONS IN ST ALBANS CITY AND DISTRICT COUNCIL AREA

Estimated background concentrations and data from national monitoring stations indicate that the objective for 1,3-butadiene is likely to be achieved by the end of 2003.

The emissions from industrial processes in St Albans City and District which have the potential to emit 1,3-butadiene are likely to be very small and therefore there is little likelihood of exceedances of the air quality objective for 1,3-butadiene.

A detailed assessment is not required for 1,3-butadiene in St Albans City and District.

6 Updating and Screening Assessment for Lead

6.1 THE NATIONAL PERSPECTIVE

The agreement reached between the European Parliament and the Environment Council on the Directive on the Quality of Petrol and Diesel Fuels (part of the Auto-Oil Programme) has led to the ban on sales of leaded petrol in the United Kingdom with effect from 1 January 2000. Emissions of lead are now restricted to a variety of industrial activities, such as battery manufacture, pigments in paints and glazes, alloys, radiation shielding, tank lining and piping.

Detailed assessments of the potential impact of lead emissions from industrial processes have been undertaken by the Government and the Devolved Administrations, based upon both monitoring and sector analysis studies. The former has included a 12-month monitoring survey in the vicinity of 30 key industrial sites in the UK, which has been used to supplement information already provided from the non-automatic monitoring networks. These monitoring data have generally indicated no exceedances of the 2004 or 2008 objectives, although locations in proximity to non-ferrous metal production and foundry processes were deemed to be at risk.

6.2 STANDARD AND OBJECTIVE FOR LEAD

The Government and the Devolved Administrations adopted an annual mean concentration of 0.5 μ gm⁻³ as the air quality standard for lead, with an objective for the standard to have been achieved by the end of 2004. In addition, a lower air quality objective of 0.25 μ gm⁻³ to be achieved by the end of 2008 has also been set.

6.3 CONCLUSIONS OF THE SECOND ROUND OF REVIEW AND ASSESSMENT FOR LEAD

The following conclusions were given for lead ` in the earlier Updating and Screening Assessment for St Albans City and District Council:

No Part A or Part B processes in the district are considered to be sources of lead.

St Albans City and District Council is not required to carry out a Detailed Review and Assessment for lead.

6.4 SCREENING ASSESSMENT OF LEAD

The sources, data or locations which require assessment according to Technical Guidance LAQM TG(03) are considered in Table 6.1.

	ie 6.1 Screening Assessment of Lead
Checklist Item (from Box 5.1 in TG(03) update)	Updating and Screening Assessment
Monitoring data	Lead is not currently monitored in St Albans City and District
New industrial sources.	There are no new industrial sources in St Albans City and District which emit lead. The only significant source of Lead in the vicinity
Industrial sources with substantially increased emissions, or new relevant exposure	of St Albans is the British Lead Mills in Welwyn Garden City. This was considered in the previous round of review and assessment and the impact on St Albans of emission from this plant were not considered to be significant. Reported emission levels have decreased from 265 kg in 2001 to 185 kg in 2004.

Table 6.1 Screening Assessment of Lead

6.5 CONCLUSIONS FOR LEAD CONCENTRATIONS IN ST ALBANS CITY AND DISTRICT

Emissions of lead from industrial processes in St Albans and surrounding districts are highly unlikely to cause exceedances of the air quality objectives for lead in 2008.

A detailed assessment is not required for lead in St Albans City and District.

7 Updating and Screening Assessment for Nitrogen Dioxide

7.1 INTRODUCTION

The principal source of NO_x emissions is road transport, which accounted for about 40% of total UK emissions in 2003. Major roads carrying large volumes of high-speed traffic (such as motorways and other primary routes) are a predominant source, as are conurbations and city centres with congested traffic. Within most urban areas, the contribution of road transport to local emissions will be much greater than for the national picture.

Meeting the annual mean objective for 2005, and the corresponding limit value in 2010, is considerably more demanding than achieving the 1-hour objective. By 2005, the annual mean objective was being achieved at all urban background locations outside of London, but being exceeded more widely at roadside sites throughout the UK in close proximity to busy road links. Projections for 2010 indicate that the EU limit value may still be exceeded at urban background sites in inner London, and at roadside locations in other cities.

7.2 STANDARDS AND OBJECTIVES FOR NITROGEN DIOXIDE

The Government and the Devolved Administrations have two Air Quality Objectives for nitrogen dioxide, as an annual mean concentration of 40 μ gm⁻³, and a 1-hour mean concentration of 200 μ gm⁻³, not to be exceeded more than 18 times per year. The objectives are to have been achieved by the end of 2005.

7.3 CONCLUSIONS OF THE SECOND ROUND OF REVIEW AND ASSESSMENT FOR NITROGEN DIOXIDE

The following conclusions were given for nitrogen dioxide in the earlier Updating and Screening Assessment for St Albans City and District Council:

- No significant industrial sources of nitrogen dioxide were determined. The St Albans bus station is unlikely to cause exceedance of the annual mean nitrogen dioxide objective at nearby relevant exposure.
- Air quality monitoring data for 2001 and 2002 indicates exceedances of the 2005 objective at several sites :
 - SA01 Hatfield Road, St Albans (kerbside)
 - SA06 Barnet Road, London Colney
 - SA07 Waterdale, Bricket Wood
 - SA09 High Street, Harpenden (kerbside)
 - SA15 Holywell Hill, St Albans (kerbside)
 - SA21 Lye lane, Bricket Wood
 - SA22 Lybury lane, Redbourn
- St Albans City and District Council needs to undertake detailed assessments for nitrogen dioxide at the two background sites (SA06 and SA22). It is believed that the kerbside sites are not at areas of relevant exposure however, further monitoring should be considered at relevant exposure near the Holywell Hill site where the highest concentrations of nitrogen dioxide were determined. The DMRB model predicts high nitrogen dioxide concentrations at three road junctions :

The A5183 and A1081 in St Albans Isolated property within the A4147, M1 and M10

St Albans City and District Council needs to undertake detailed assessments for nitrogen dioxide at these locations.

The Detailed Assessment recommended AQMAs be declared in the following areas:

- > Peahen Crossroads, Central St Albans
- > M1 Junction 7 with M10

AQMAS are currently declared for NO₂ in St Albans City and District at the following locations (Appendix 5):

- AQMA 1 London Road St Albans
 AQMA 2 Beechtree Cottages Hemel Hempstead
- > AQMA 7 Frogmore and Colney Street in the Vicinity of the M25

7.4 SCREENING ASSESSMENT OF NITROGEN DIOXIDE

The sources, data or locations which require assessment according to Technical Guidance LAQM TG(03) are considered in Table 7.1.

Checklist Item (from Box 6.2 in TG(03) update)	Updating and Screening Assessment
Monitoring data outside an AQMA	Monitoring is undertaken at sites across the district (section 7.6)
Monitoring data within an AQMA	Monitoring is currently undertaken using diffusion tubes within two of the AQMAs in St Albans City and District (section 7.6.4.)
Narrow congested streets with residential properties close to the kerb	No streets in this category have been identified in St Albans.
Junctions.	Annual average nitrogen dioxide concentrations at receptors near busy road junctions in St Albans City and District were assessed in the previous Updating and Screening Assessments for 2005 and 2010. There has been no significant increase in traffic flows recorded at any of the junctions.
Busy streets where people may spend 1-hour or more close to traffic	No streets in this category have been identified in St Albans.
Roads with high flow of buses and/or HGVs.	There are no roads identified in St Albans with high (>20%) flows of buses or HGVs.
New roads constructed or proposed since the previous round of R&A	No new roads have been constructed or proposed since the last round of Review and Assessment.
Roads with significantly changed traffic flows, or new relevant exposure	There have been no significant changes in traffic flows or exposure on A roads and motorways in St Albans City and District since the last Updating and Screening Assessment.
Bus Stations	The bus station in St Albans City was considered in the previous updating and screening assessment. The bus movements are greater than 1000 per day but there is no relevant exposure within 20m
New industrial sources.	There are no new industrial sources in St Albans which have the potential to emit nitrogen dioxide. There are no Part A processes in St
Industrial sources with substantially increased emissions, or new relevant exposure	Albans. Based on the information available, none of the Part B industrial processes in St Albans have increased emissions or new relevant exposure.
Aircraft	There are no major airports in the district. The nearest major airport is Luton airport which is about 4 km northwest of the district.

Table 7.1 Screening Assessment of NO₂

7.5 BACKGROUND CONCENTRATIONS FOR NITROGEN DIOXIDE

The estimated average background NO₂ concentration for St Albans City and District in 2005 from UK Background maps⁷ was 19.0 μ gm⁻³ with a maximum concentration of 29.8 μ gm⁻³. The estimated average background NO₂ concentration in 2010 was 16.2 μ gm⁻³ with a maximum concentration of 24.3 μ gm⁻³. The maximum concentrations were estimated for a location close to Junction 21A of the M25.

7.6 SCREENING ASSESSMENT OF MONITORING DATA

7.6.1 Diffusion tube monitoring

Diffusion tubes at 32 sites are operated by St Albans City and District Council (Appendix A table 1.1). Triplicate tubes are co-located with the automatic monitor at Fleetville Centre. Table 7.1 shows annual average nitrogen dioxide concentrations at sites in St Albans City and District for 2005, with estimates of likely concentrations in 2010.

7.6.2 Bias correction of diffusion tube data

Diffusion tubes were co-located with the continuous monitor at the Fleetville Centre site during 2005. The bias adjustment factor was calculated using the netcen spreadsheet for calculating the precision and accuracy of diffusion tubes. This provides a bias adjustment factor of 0.97. The diffusion tube results have been multiplied by this adjustment factor (the bias correction factor obtained from the UWE spreadsheet was 0.99 for 2005 based on 9 studies and therefore in good agreement with the local factor).

Table 7.2 Bias corrected annual average NO₂ concentrations at sites in St Albans City and District in 2005 (μ gm⁻³)

Туре	Code	Address	Annual Mean Bias adjusted 2005	Prediction for 2010
R	SA01	Museum of St Albans, Hatfield Road	35.4	29.7
В	SA02	Holywell Hill, St Albans	25.3	22.0
В	SA03	St Peters Street, St Albans	29.6	24.9
В		Pondfield Crescent Marshalswick St Albans	22.2	19.3
В	SA05	Ben Austins, Redbourn	24.1	20.2
В	SA06	Ridgeview Hostel, Barnet Road, London Colney	32.7	27.5
В	SA07	Waterdale, Bricket Wood	42.0	35.3
В	SA08	Bowmans Green JMI, Telford Rd, London Colney	30.6	26.6
R		High Street, Harpenden	38.0	31.9
В		Crabtree Lane, Harpenden	25.0	21.8
В		Redbourn JMI, Crouch Hall Lane, Redbourn	25.3	22.0
В		Ashridge Drive, Bricket Wood	28.7	25.0
R		Wheathampstead High Street	27.5	23.1
В		Adult Ed. Centre, Butterfield, Wheathampstead	22.1	19.2
R	SA15	Peahen PH, Holywell Hill, St Albans	51.3	43.1
В		Tippendell Lane, St Albans	30.7	26.7
В	SA17	London Colney Roundabout	32.8	28.6
В	SA18	Batchwood Drive, St Albans	24.9	20.9
В	SA20	Fleetville C. Centre 1, Royal Rd, St Albans (SA1)	25.8	22.4
В	SA21	Lye Lane, Bricket Wood	38.4	33.4
В	SA22	Lybury Lane	42.9	37.3
В	SA23	St Agnells	26.9	23.4
В	SA24	Redding Lane	26.6	23.2
В	SA25	Searches Farm	36.7	32.0
В	SA26	Oakwood Road	35.6	30.9
В	SA27	Five Acres Avenue, Bricket Wood	31.2	27.1
В	SA29	Meadow Close, Bricket Wood	32.4	28.2
В	SA30	Smug Oak Lane	43.8	38.1
В	SA31	Radlett Road	44.0	37.0
В	SA32	Sycamore Drive, Park Street	35.0	30.5
K	SA33	Mount Drive, Park Street	42.0	36.5
В	SA34	Fleetville C. Centre 2, Royal Rd, St Albans (SA1)	26.6	23.1
В	SA35	Fleetville C. Centre 3, Royal Rd, St Albans (SA1)	25.8	22.4
В	SA37	Sleapcross Gardens	35.0	30.5
K=Ker	bside			

K=Kerbside

R=Roadside

B=Background

From Guidance LAQM TG(03) the adjustment factor to estimate annual average concentrations in 2010 from 2005 data is 0.87 for background sites and 0.84 for roadside sites .

7.6.3 Diffusion tube analysis

It can be seen from Table 7.1 that bias corrected concentrations in 2005 were above the objective annual mean limit value of 40 μ gm⁻³ at six sites:

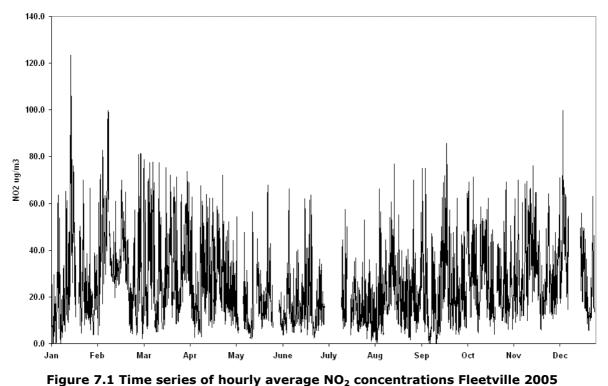
SA 07 Waterdale Bricket Wood (M1) SA 15 Peahen PH Holywell Hill St Albans SA 22 Lybury Lane Redbourn (M1) SA 30 Smug Oak Lane Bricket Wood (M25) SA 31 Radlett Road (M25) SA 33 Mount Drive Park Street

Concentrations are predicted to still exceed 40 μ gm⁻³ at the Holywell Hill site in 2010.

- Diffusion tubes SA 15, SA 30 and SA 31 are within existing AQMAs (section 7.6.4).
- The area of Lybury Lane Redbourn (SA 22) was considered in the 2004 Detailed Assessment and it was concluded that there were no relevant receptors in the areas of exceedence and that no further action was necessary.
- The Bricket Wood Area (SA 07) is within a revoked AQMA. The area was remodelled for the Stage 4 Assessment. This assessment concluded that no exceedances were likely at relevant locations in Bricket Wood.
- > Mount Drive/Park Street (SA 33); This is a kerbside site and the nearest receptor is 36m away. Using the factor of 0.75 to as given in the Air Quality Review and Assessment website the concentration at the nearest building facade is estimated to be $31.5 \,\mu gm^{-3}$.

7.6.4 Monitoring within AQMAs

Monitoring for NO_2 using diffusion tubes is currently undertaken at two site within AQMA 7 (Frogmore and Colney Street) and at one location on the edge of AQMA 1 (London Road St Albans)


The biased corrected concentrations for 2005 are as follows:

Location	AQMA No	NO ₂ Annual Mean Bias adjusted 2005 μgm ⁻³
SA30 Smug Oak Lane	7	43.8
SA 31 Radlett Road	7	44.0
SA 15 Peahen Pub	1	51.3

The measured concentrations in these AQMAs are above the annual mean objective for 2005 and therefore the AQMAS should remain in place.

7.6.5 Automatic Monitoring

Nitrogen dioxide is monitored using a chemiluminescent monitor at the Fleetville Centre site. The time series plot of hourly average NO_2 concentrations in 2005 is shown in Figure 7.1.

The annual average concentration recorded at the Fleetville site was 25.9 $\mu gm^{\text{-3}}$ with a maximum one-hour concentration of 123 $\mu gm^{\text{-3}}$.

7.7 SCREENING ASSESSMENT OF ROAD TRAFFIC SOURCES

An initial screening assessment was undertaken using DMRB for A roads and motorways in St Albans using data taken from the NAEI. Traffic speeds and receptor distance were selected to provide "worst case" estimates. Table 7.3 shows that annual mean concentrations in excess of 40 μ gm⁻³ were predicted at receptors close the M1, M10 and M25 motorways.

Road		AADT 2005 (combined	average speed	Total %		
name	(m)	veh/day)	(km/h)	HDV	NO2	(µgm⁻³)
					2005	2010
M10	15	25548	95	10.3	30.8	25.4
A5183	5	20792	80	3.4	28.5	23.3
A5183	5	12028	51	4.6	26.4	22.4
A1081	5	16153	80	3.5	22.6	18.2
A1057	5	16975	51	6.3	23.3	18.3
A5183	5	16294	80	3.2	22.5	18.1
A1081	5	14352	51	8.1	29.1	24.7
4414	10	40383	80	8.1	26.7	20.8
44147	5	28145	51	2.8	25.8	21.6
M1	15	174618	113	13.2	44.7	36.1
45	10	24361	113	10.6	33.8	27.4
45183	5	17492	80	3.4	25.6	21.7
A1081	5	21133	51	2.9	24.3	20.6
A1081	5	24171	51	10.6	27.2	21.3
4405	5	25495	80	8.4	30.8	25.4
M25	15	100297	113	16.0	44.7	36.0
M1	15	136587	113	14.0	42.7	34.5
A1081	5	18964	51	3.1	26.1	22.2
A4147	5	10425	51	2.5	22.9	19.9
M25	15	122564	113	16.3	46.6	37.6
M1	15	149070	113	13.7	45.6	36.7
A1081	5	15543	51	3.0	25.8	21.9
4414	10	51715	80	7.5	32.3	26.5
A5183	5	8092	51	2.6	22.2	19.3
M1	15	146784	113	14.2	43.9	35.4
A5183	5	25506	80	2.4	23.2	19.5
41081	5	17173	80	2.6	24.5	20.5
A4147	5	10639	80	3.7	29.1	23.9
M1	15	48129	113	8.0	34.1	27.8
45	10	24363	113	10.6	33.8	27.4
41081	5	15762	51	3.4	23.2	19.9
41081	5	19262	51	2.9	23.8	20.3
45183	5	12435	80	7.7	27.4	23.0
4405	5	25922	80	8.7	31.2	25.8
A1057	5	10270	51	5.6	25.4	21.7
A1081	5	10192	51	3.4	24.1	20.8
A5183	5	18007	51	3.9	27.4	23.2

Table 7.3 Annual average NO₂ concentrations estimated using NAEI data

The road links where exceedences were predicted have been re-examined using actual receptor distances determined from OS Landline GIS maps (Table 7.4).

10				oncentration	is estimat	eu using i	
	East	North		AADT			
			Receptor	2005	average		
Road			Distance	(combined	speed	Total %	NO2 (µgm⁻³)
name			(m)	veh/day)	(km/h)	HDV	2005
M1	509757	207000	215	174618	113	13.2	24.8
M25	512500	203110	273	100297	113	16.0	23.7
M1	509100	215300	193	136587	113	14.0	25.1
M25	516216	202781	38	122564	113	16.3	38.5
M1	516216	202781	39	149070	113	13.7	38.2
M1	509175	207600	36	146784	113	14.2	39.0

Table 7.4 Annual average NO₂ concentrations estimated using NAEI data

There are no exceedences predicted for 2005 at the closest receptors to locations examined near the M1 and M25.

7.7.1 Busy Junctions The following roads and junctions were identified as areas of high traffic volumes with potential for public exposure. These roads been examined using DMRB with traffic data from Hertfordshire County Council or the NAEI. Tables 7.5 and 7.6 show NO₂ concentrations at the nearest receptors to the junctions. Receptor distance were measured using the OS Landline maps for the District

Table 7.5 Annual average NO $_2$ concentrations at road junctions in St Albans City and
District
2005

		2005				
Location	Junction	East	North	AADT 2005	%HDV	NO₂ (µgm⁻³)
St Albans	A5183 Holywell Hill A1081 London Road	514900	206940	19082 25842	3.7 4.0	35.9
St Albans	A 5183 Watling Street A414 North Orbital Road	514200	205200	16152 43209	4.0 4.0	24.2
St Albans	A4147 Bluehouse Hill C98 King Harry Lane	513150	206720	23923 17473	4.0 4.0	26.5
St Albans	C62 Batchwood Drive A1081 Harpenden Road	514300	208500	16919 16751	4.0 4.0	31.0
Redbourn	M1 Junction 9 A5183 Redbourn Road	509500	214500	137272 14616	15.8 4.0	25.2
Hemel Hempstead	M1 Junction 8 A414 Breakspear Way	508600	207500	137272 48845	15.8 4.0	32.3

Table 7.6 Annual average NO₂ concentrations at road junctions in St Albans City and District 2010

		2010				
Location	Junction	East	North	AADT 210	%HDV	NO ₂ (μgm ⁻³)
St Albans	A5183 Holywell Hill A1081 London Road	514900	206940	20418 27651	3.7 4.0	28.0
St Albans	A 5183 Watling Street A414 North Orbital Road	514200	205200	17283 46234	4.0 4.0	20.9
St Albans	A4147 Bluehouse Hill C98 King Harry Lane	513150	206720	25598 18696	4.0 4.0	26.5
St Albans	C62 Batchwood Drive A1081 Harpenden Road	514300	208500	18103 17924	4.0 4.0	25.1
Redbourn	M1 Junction 9 A5183 Redbourn Road	509500	214500	146881 15639	15.8 4.0	20.4
Hemel Hempstead	M1 Junction 8 A414 Breakspear Way	508600	207500	146881 52264	15.8 4.0	26.5

The DMRB study indicate that there are no junctions where the NO_2 objectives are likely to exceeded.

7.8 CONCLUSIONS FOR NITROGEN DIOXIDE CONCENTRATIONS IN ST ALBANS CITY AND DISTRICT

No roads or busy junctions were identified using DMRB where the objectives were likely to be exceeded.

 NO_2 concentrations in 2005 measured using diffusion tubes were above the objective annual mean limit value of 40 $\mu gm^{\text{-3}}$ at six sites:

SA 07 Waterdale Bricket Wood (M1) SA 15 Peahen PH Holywell Hill St Albans SA 22 Lybury Lane Redbourn (M1) SA 30 Smug Oak Lane Bricket Wood (M25) SA 31 Radlett Road (M25) SA 33 Mount Drive Park Street

The conclusions for these areas are as follows:

- > Diffusion tubes SA 15, SA 30 and SA 31 are within existing AQMAs.
- The area of Lybury Lane Redbourn (SA 22) was considered in the 2004 Detailed Assessment and it was concluded that there were no relevant receptors in the areas of exceedence and that no further action was necessary.
- The Bricket Wood Area (SA 07) is within a revoked AQMA. The area was remodelled for the Stage 4 Assessment. This assessment concluded that no exceedances were likely at relevant locations in Bricket Wood.
- Mount Drive/Park Street (SA 33); This is a kerbside site and the nearest receptor is 36m away. Using the factor of 0.75 to as given in the Air Quality Review and Assessment website the concentration at the nearest building facade is estimated to be 31.5 µgm⁻³.

A detailed assessment is not required for nitrogen dioxide in St Albans City and District.

8 Updating and Screening Assessment for Sulphur Dioxide

8.1 INTRODUCTION

The main source of sulphur dioxide in the United Kingdom is power stations, which accounted for more than 69% of emissions in 2003. There are also significant emissions from other industrial combustion sources. Domestic sources now only account for 4% of emissions, but can be locally much more significant. Road transport currently accounts for less than 1% of emissions.

Local exceedances of the objectives (principally the 15-minute mean objective) may occur in the vicinity of small combustion plant (less than 20 MW), which burn coal or oil, in areas where solid fuels are the predominant form of domestic heating, and in the vicinity of major ports.

8.2 STANDARD AND OBJECTIVE FOR SULPHUR DIOXIDE

The Government and the Devolved Administrations adopted a 15-minute mean of 266 μ gm⁻³ as an air quality standard for sulphur dioxide, with an objective for the standard not to be exceeded more than 35 times in a year by the end of 2005.

Additional objectives have also been set which are equivalent to the EU limit values specified in the First Air Quality Daughter Directive. These are for a 1-hour mean objective of $350 \ \mu gm^{-3}$, to be exceeded no more than 24 times per year, and a 24-hour objective of 125 $\ \mu gm^{-3}$, to be exceeded no more than 3 times per year, to have been achieved by the end of 2004.

8.3 CONCLUSIONS OF THE FIRST ROUND OF REVIEW AND ASSESSMENT FOR SULPHUR DIOXIDE

The following conclusions were given for sulphur dioxide in the earlier Updating and Screening Assessment for St Albans City and District Council:

- There are no significant industrial sources of sulphur dioxide in St Albans City and District or close to its boundaries;
- St Albans City and District Council is not required to carry out a Detailed Review and Assessment for sulphur dioxide.

8.4 SCREENING ASSESSMENT OF SULPHUR DIOXIDE

The Technical Guidance LAQM TG(03) requires assessment of sulphur dioxide to consider the following sources, data or locations:

Checklist Item (from Box 7.2 in TG(03))	Updating and Screening Assessment			
Monitoring data outside an AQMA	Monitoring of sulphur dioxide is undertaken at the Fleetville automatic monitoring station (section 8.6).			
Monitoring data within an AQMA	Monitoring of sulphur dioxide is not currently undertaken within AQMAs in St Albans.			
New industrial sources.	There are no new industrial sources in St Albans which have the potential to emit sulphur dioxide. There a no Part A processes in St Albans. Based on the information available, none of the Part B industrial processes in St Albans operate processes which have increased emissions or new relevant exposure.			
Industrial sources with substantially increased emissions, or new relevant exposure				
Areas of domestic coal burning	Domestic solid fuel use was assessed in the previous round of review and assessment and shown not to be significant. There is no evidence of any increase the use of solid domestic fuel.			
Small Boilers > 5 MW (thermal).	No small boiler processes have been identified for St Albans with output greater than 5MW.			
Shipping	N/A St Albans is inland and therefore there are no emissions from coastal shipping in St Albans			
Railway Locomotives	According to information supplied by St Albans City and District Council there are no areas where railway engines are run for more than 15 minutes continuously and where members of the public might be exposed.			

Table 0.1. Concerning Assessment of CO

8.5 BACKGROUND CONCENTRATIONS FOR SULPHUR DIOXIDE

The estimated average background sulphur dioxide concentration in St Albans City and District estimated from UK background concentration maps⁷ for 2001 was 3.8 μ gm⁻³ in with a maximum concentration of 9.5 μ gm⁻³ in 2001. The maximum concentrations were estimated for a location close to the Hatfield Road, Smallford.

8.6 SCREENING ASSESSMENT OF MONITORING DATA

Monitoring for sulphur dioxide was carried out in 2005 at the Fleetville Community Centre Site. Figure 8.1 shows the time series of hourly average concentrations in 2005.

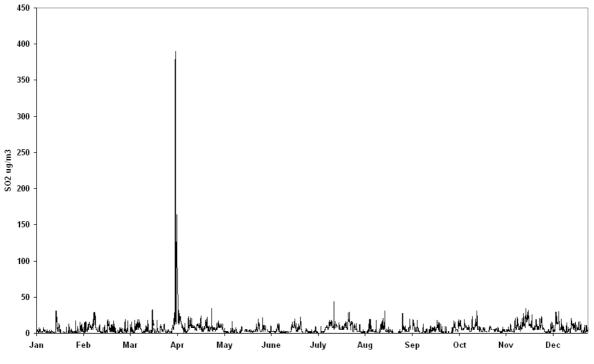


Figure 8.1 Time series of hourly average SO₂ concentrations Fleetville 2005

The average concentration recorded in 2005 was 5.8 $\mu gm^{^{-3}}$ with a maximum of 390 $\mu gm^{^{-3}}$. There were two exceedences of the hourly mean objective of 350 and 13 exceedences of the 15-minute objective value of 267 $\mu gm^{^{-3}}$.

8.7 CONCLUSIONS FOR SULPHUR DIOXIDE CONCENTRATIONS IN ST ALBANS CITY AND DISTRICT

There are no significant industrial or domestic sources of sulphur dioxide in St Albans City and District and exceedances of the air quality objectives for sulphur dioxide are unlikely.

A detailed assessment is not required for sulphur dioxide.

9 Updating and Screening Assessment for PM₁₀

9.1 THE NATIONAL PERSPECTIVE

National UK emissions of primary PM_{10} have been estimated as totalling 141,000 tonnes in 2003. Of this total, around 27% was derived from road transport sources. It should be noted that, in general, the emissions estimates for PM_{10} are less accurate than those for the other pollutants with prescribed objectives, especially for sources other than road transport.

The Government established the Airborne Particles Expert Group (APEG) to advise on sources of PM_{10} in the UK and current and future ambient concentrations. Their conclusions were published in January 1999 (APEG, 1999). APEG concluded that a significant proportion of the current annual average PM_{10} is due to the secondary formation of particulate sulphates and nitrates, resulting from the oxidation of sulphur and nitrogen oxides. These are regional scale pollutants and the annual concentrations do not vary greatly over a scale of tens of kilometres. There are also natural or semi-natural sources such as wind-blown dust and sea salt particles. The impact of local urban sources is superimposed on this regional background. Such local sources are generally responsible for winter episodes of hourly mean concentrations of PM_{10} above 100 µg m⁻³ associated with poor dispersion. However, it is clear that many of the sources of PM_{10} are in part dependent on predictions of the secondary particle component.

9.2 STANDARD AND OBJECTIVE FOR PM₁₀

The Government and the Devolved Administrations have adopted two Air Quality Objectives for fine particles (PM_{10}), which are equivalent to the EU Stage 1 limit values in the first Air Quality Daughter Directive. The objectives are 40 µgm⁻³ as the annual mean, and 50 µgm⁻³ as the fixed 24-hour mean to be exceeded on no more than 35 days per year, to be achieved by the end of 2004. The objectives are based upon measurements carried out using the European gravimetric transfer reference sampler or equivalent. There are also new particle objectives of 20 µgm⁻³ as the annual mean, and 50 µgm⁻³ as the fixed 24-hour mean to be exceeded on no more than 7 days per year, to be achieved by the end of 2010. These objectives are not currently included in the Regulations for the purpose of local air quality management but are likely to be in the future.

9.3 CONCLUSIONS OF THE FIRST ROUNDS OF REVIEW AND ASSESSMENT FOR PM_{10}

The following conclusions were given for $\mathsf{PM}_{10}\,$ in the earlier Updating and Screening Assessment for St Albans City and District Council:

The DMRB screening model and automatic monitoring indicate that:

- > The annual mean objective of 40 μ gm⁻³ for PM₁₀ will be met and that the 24 hour mean objective value of 50 μ gm⁻³ will not be exceeded more than 35 times in 2004;
- > The annual mean objective of 20 μ gm⁻³ for PM₁₀ may be exceeded at relevant locations and that the 24 hour mean objective value of 50 μ gm⁻³ may be exceeded more than 7 times per year in 2010*.

*These objectives are not included in the Regulations for the purpose of local air quality management.

St Albans City and District Council is not required to carry out a Detailed Review and Assessment for PM_{10} .

9.4 SCREENING ASSESSMENT OF PM₁₀

The Technical Guidance LAQM TG(03) requires assessment of PM_{10} to consider the following sources, data or locations:

Checklist Item (from Box 6.2 in TG(03) update)	Updating and Screening Assessment
Monitoring data outside an AQMA	Monitoring of PM_{10} is undertaken at the Fleetville automatic monitoring site.
Monitoring data within an AQMA	Monitoring of PM_{10} is not undertaken within AQMAs in St Albans
Junctions.	Annual average PM_{10} concentrations and exceedances of the daily mean at receptors near busy road junctions in St Albans City and District were estimated in the previous Updating and Screening Assessment for 2004 and 2010. The estimated concentrations were generally below the objective values (although there were some possible exceedances of the 2010 annual mean) and there has been no significant increase in traffic flows recorded at any of the junctions.
Roads with high flow of buses and/or HGVs.	There are no roads identified in St Albans with high (>20%) flows of buses or HGVs
New roads constructed or proposed since last round of R&A	No new roads have been constructed or proposed since the previous round or review and assessment.
Roads with significantly changed traffic flows, or new relevant exposure.	There have been no significant changes in traffic flows or exposure on A roads and motorways in St Albans City and District since the last Updating and Screening Assessment.
Roads close to the objective during the second round of Review and Assessment	There were no roads estimated to have PM_{10} concentrations close to the 2004 objectives during the last Review and Assessment. The maximum concentration calculated using the DMRB model was 30.3 ugm ⁻³ for a section of the M1.
New industrial sources.	There are no new industrial sources in St Albans which have the potential to emit significant amounts of PM_{10} . There are no Part A
Industrial sources with substantially increased emissions, or new relevant exposure	processes in St Albans. Based on the information available, none of the Part B industrial processes in St Albans operate processes which have increased emissions or new relevant exposure
Areas of domestic solid fuel burning	Domestic solid fuel use was assessed in the previous round of review and assessment and shown not to be significant. There is no evidence of any increase the use of solid domestic fuel.
Quarries / landfill sites / opencast coal / handling of dusty cargoes at ports etc.	There have been no new landfill or quarrying processes in the District since the last round of review and assessment.
Aircraft	There are no major airports in the district. The nearest major airport is Luton airport which is about 4 km northwest of the district

9.5 BACKGROUND CONCENTRATIONS FOR PM₁₀

The estimated average background PM_{10} concentration for St Albans City and District in 2005 from UK Background maps⁷ was 22.0 μ gm⁻³ with a maximum concentration of 25.7 μ gm⁻³. The estimated average background PM_{10} concentration in 2010 was 20.2 μ gm⁻³ with a maximum concentration of 23.2 μ gm⁻³ at a Chilswell Green close to the M1 and M25.

9.6 SCREENING ASSESSMENT OF MONITORING DATA

Monitoring for PM_{10} is been undertaken in St Albans City and District at the Fleetville Centre Site using a TEOM automatic monitor. The time series of hourly average concentrations is shown in Figure 9.1.

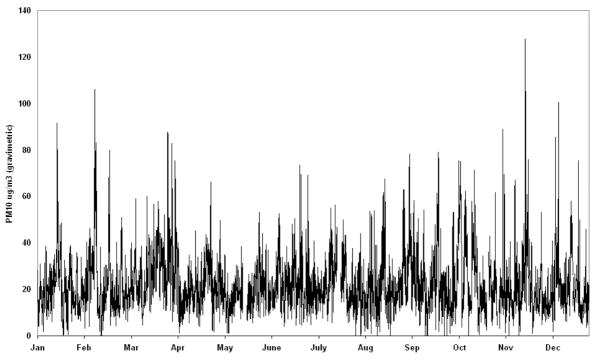


Figure 9.1 Time series of hourly average PM₁₀ concentrations Fleetville 2005

The annual average concentration recorded for 2005 was 22.0 μ gm⁻³ (gravimetric). There were three days when the daily average objective value of 50 μ gm⁻³ was exceeded. The estimated annual mean concentration for 2010 using the procedures in Box 8.5 of LAQM TG(0 3) is 20.6 μ gm⁻³.

9.7 SCREENING ASSESSMENT OF ROAD TRAFFIC SOURCES

Traffic flow data and count data supplied by Hertfordshire County Council (Appendix 2) show that there have been no significant increase in traffic flows since the last Updating and Screening Assessment. An initial screening assessment was undertaken using DMRB for A roads and motorways in St Albans using data taken from the NAEI. Traffic speeds and receptor distance were selected to provide "worst case" estimates. Table 9.2 shows that annual mean concentrations in excess of 40 μ gm⁻³ were predicted at receptors close the M1, M10 and M25 motorways.

Road name	Distance from link centre to receptor (m)	AADT *(combined, veh/day)	Annual average speed (km/h)	Total % HDV	PM ₁₀ (μgm ⁻³) 2004	Days >50 (μgm ⁻³) 2004	PM ₁₀ (μgm ⁻³) 2010	Days >50 (μgm ⁻³) 2010
M10	15	27557	95	10.3	28.1	21	24.0	10
A5183	5	22427	80	3.4	26.3	16	22.7	7
A5183	5	12973	51	4.6	25.9	15	22.6	7
A1081	5	17423	80	3.5	24.0	10	20.9	5
A1057	5	18310	51	6.3	24.6	11	21.0	5
A5183	5	17575	80	3.2	24.0	10	20.9	5
A1081	5	15481	51	8.1	27.4	19	23.5	9
A414	10	43559	80	8.1	25.8	14	21.8	6
A4147	5	30358	51	2.8	26.0	15	22.4	7
M1	15	188349	113	13.2	37.7	64	29.7	26
A5	10	26277	113	10.6	29.7	26	24.7	12
A5183	5	18867	80	3.4	25.7	14	22.3	7
A1081	5	22795	51	2.9	25.3	13	22.0	6
A1081	5	26072	51	10.6	26.5	16	22.0	6
A405	5	27500	80	8.4	28.1	21	23.8	10
M25	15	108184	113	16.0	36.3	56	28.8	23
M1	15	147327	113	14.0	35.9	54	28.3	22
A1081	5	20455	51	3.1	26.2	16	22.8	8
A4147	5	11245	51	2.5	24.6	11	21.7	6
M25	15	132202	113	16.3	37.7	65	29.8	27
M1	15	160792	113	13.7	37.5	64	29.6	26
A1081	5	16765	51	3.0	26.0	15	22.6	7
A414	10	55781	80	7.5	28.9	24	24.3	11
A5183	5	8729	51	2.6	24.2	11	21.5	5
M1	15	158326	113	14.2	36.6	58	28.9	24
A5183	5	27512	80	2.4	24.5	11	21.3	5
A1081	5	18523	80	2.6	24.7	12	21.4	5
A4147	5	11475	80	3.7	26.5	16	23.1	8
M1	15	51913	113	8.0	30.6	38	25.7	14
A5	10	26279	113	10.6	29.7	26	24.7	12
A1081	5	17002	51	3.4	24.8	12	21.6	6
A1081	5	20777	51	2.9	25.1	13	21.7	6
A5183	5	13412	80	7.7	26.3	16	22.8	8
A405	5	27960	80	8.7	28.2	21	23.9	10
A1057	5	11077	51	5.6	25.5	14	22.4	7
A1081	5	10994	51	3.4	25.1	13	22.2	7
A5183	5	19423	51	3.9	26.8	17	23.1	8

Table 9.2 Annual Average $\rm PM_{10}~$ Concentrations in St Albans City and District

The DMRB screening tool indicates that the annual mean concentration objective for 2004 was achieved but that the daily mean objective may have been exceeded at locations near the M1 and M25. These locations have been remodelled for 2004 using receptor distances obtained from OS Landline GIS maps (Table 9.3). The DMRB model indicates that the 2004 objective would not have been exceeded at the nearest receptors to the road areas studied.

The projected 2010 annual mean concentration and daily concentrations greater than 50 $\mu gm^{\text{-}3}$ objectives are likely to be widely exceeded.

	Table 9.3 Annual average PM10 concentrations estimated using NAEI data											
Road name	East	North	Distance from link centre to receptor (m)	AADT 2004(combi ned, veh/day)	Annual average speed (km/h)	Total % HDV	ΡΜ ₁₀ (μgm ⁻³) 2004	Days >50 (μgm ⁻³)				
M1	509757	207000	215	171633	113	13.2	24.7	11.8				
M25	512500	203110	273	98583	113	16.0	25.8	14.4				
M1	509100	215300	700	134252	113	14.0	22.6	7.4				
M25	516216	202781	38	120469	113	16.3	30.9	30.8				
M1	511254	204604	450	146522	113	13.7	24.0	10.0				
M1	509700	210500	36	144275	113	8.0	28.6	22.5				

9.7.1 Busy Junctions

The following roads and junctions were identified as areas of high traffic volumes with potential for public exposure. These roads been examined using DMRB with traffic data from Hertfordshire County Council or the NAEI. Tables 9.4 and 9.5 show PM_{10} concentrations at the nearest receptors to the junctions. Receptor distance were measured using the OS Landline maps for the District

Table 9.4 Annual average PM10concentrations at road junctions in St Albans City and
District
2004

		2004					
Location	Junction	East	North	AADT 2004	%HDV	ΡΜ₁₀ (μgm⁻⁴	Days >50
St Albans	A5183 Holywell Hill A1081 London Road	514900	206940	18708 25335	3.7 4.0	30.2	28.4
St Albans	A 5183 Watling Street A414 North Orbital Road	514200	205200	15835 42362	4.0 4.0	23.5	9.0
St Albans	A4147 Bluehouse Hill C98 King Harry Lane	513150	206720	23454 17130	4.0 4.0	24.6	11.5
St Albans	C62 Batchwood Drive A1081 Harpenden Road	514300	208500	16587 16423	4.0 4.0	28.0	20.7
Redbourn	M1 Junction 9 A5183 Redbourn Road	509500	214500	134580 14329		22.6	7.3
Hemel Hempstead	M1 Junction 8 A414 Breakspear Way	508600	207500	134580 47887		26.0	14.9

		2010					
Location	Junction	East	North	AADT 2010	%HDV	PM ₁₀	Days >50
St Albans	A5183 Holywell Hill A1081 London Road	514900	206940	20418 27651	3.7 4.0	26.4	15.9
St Albans	A 5183 Watling Street A414 North Orbital Road	514200	205200	17283 46234	4.0 4.0	22.5	7.2
St Albans	A4147 Bluehouse Hill C98 King Harry Lane	513150	206720	25598 18696	4.0 4.0	25.5	13.5
St Albans	C62 Batchwood Drive A1081 Harpenden Road	514300	208500	18103 17924	4.0 4.0	24.5	11.3
Redbourn	M1 Junction 9 A5183 Redbourn Road	509500	214500	146881 15639	15.8 4.0	21.4	5.3
Hemel Hempstead	M1 Junction 8 A414 Breakspear Way	508600	207500	146881 52264	15.8 4.0	24.7	1.8

Table 9.5 Annual average PM₁₀ concentrations at road junctions in St Albans City and District 2010

The DMRB screening tool indicates that the annual and daily mean concentration objectives for 2004 was achieved. The projected 2010 annual mean concentration and daily exceedances are likely to be widely exceeded.

9.8 CONCLUSIONS FOR PM₁₀ CONCENTRATIONS IN ST ALBANS CITY AND DISTRICT

The DMRB screening tool indicates that the annual mean concentration and the daily mean objectives will have been achieved. The projected 2010 annual mean concentration and daily exceedances are likely to be widely exceeded.

10 Conclusions

10.1 CARBON MONOXIDE

There are no roads in St Albans City and District which can be classified as 'very busy' according to the criteria in the guidance. There are no industrial processes which are significant sources of carbon monoxide. Exceedances of the air quality objective for carbon monoxide are therefore unlikely.

A detailed assessment is not required for carbon monoxide in St Albans City and District.

10.2 BENZENE

There are no roads in St Albans City and District, which can be classified as 'very busy' according to the criteria in the guidance. There are no petrol stations with a throughput greater than 2 million litres and with relevant exposure within 10m of the pumps.

A detailed assessment is not required for benzene in St Albans City and District.

10.3 1,3-BUTADIENE

Estimated background concentrations and data from national monitoring stations indicate that the objective for 1,3-butadiene is likely to be achieved by the end of 2003. There are no industrial processes, current or proposed, in St Albans City and District, which have the potential to emit 1,3-butadiene.

A detailed assessment is not required for 1,3-butadiene in St Albans City and District.

10.4 LEAD

Emissions of lead from industrial processes in St Albans City and District are likely to be very small and it is unlikely they will cause exceedances of the air quality objectives for lead in 2004 and 2008.

A detailed assessment is not required for lead in St Albans City and District.

10.5 NITROGEN DIOXIDE

No roads or busy junctions were identified using DMRB where the objectives were likely to be exceeded.

 NO_2 concentrations in 2005 measured using diffusion tubes were above the objective annual mean limit value of 40 μ gm⁻³ at six sites:

SA 07 Waterdale Bricket Wood (M1) SA 15 Peahen PH Holywell Hill St Albans SA 22 Lybury Lane Redbourn (M1) SA 30 Smug Oak Lane Bricket Wood (M25) SA 31 Radlett Road (M25) SA 33 Mount Drive Park Street

The conclusions for these areas are as follows:

> Diffusion tubes SA 15, SA 30 and SA 31 are within existing AQMAs.

- The area of Lybury Lane Redbourn (SA 22) was considered in the 2004 Detailed Assessment and it was concluded that there were no relevant receptors in the areas of exceedence and that no further action was necessary.
- The Bricket Wood Area (SA 07) is within a revoked AQMA. The area was remodelled for the Stage 4 Assessment. This assessment concluded that no exceedances were likely at relevant locations in Bricket Wood.
- Mount Drive/Park Street (SA 33); This is a kerbside site and the nearest receptor is 36m away. Using the factor of 0.75 to as given in the Air Quality Review and Assessment website the concentration at the nearest building facade is estimated to be 31.5 µgm⁻³.

A detailed assessment is not required for nitrogen dioxide in St Albans City and District.

10.6 SULPHUR DIOXIDE

There are no significant industrial or domestic sources of sulphur dioxide in St Albans City and District.

A detailed assessment is not required for sulphur dioxide in St Albans City and District.

10.7 PM₁₀

The DMRB screening tool indicates that the annual mean concentration and the daily mean objectives for 2004 will have been achieved. The projected 2010 annual mean concentration and daily mean objectives are likely to be widely exceeded in that year .

A detailed assessment is not required for PM_{10} in St Albans City and District.

10.8 SUMMARY AND RECOMMENDATIONS

This updating and screening assessment for St Albans City and District Council has concluded that all the objectives in the Air Quality Regulations for England will be met by the relevant dates. However, the EU annual average limit value (Stage 2) for PM_{10} may be exceeded at some locations within the District, close to busy roads and junctions in 2010.

AEAT/ENV/R/2183

11 The UK Air Quality Strategy

The Government prepared the Air Quality Strategy for England, Scotland, Wales and Northern Ireland for consultation in August 1999. It was published in January 2000 (DETR, 2000)³.

11.1.1 National Air Quality Standards

At the centre of the Air Quality Strategy is the use of national air quality standards to enable air quality to be measured and assessed. These also provide the means by which objectives and timescales for the achievement of objectives can be set. These standards and associated specific objectives to be achieved between 2003 and 2008 are shown in Table 13.1. The table shows the standards in ppb and μ gm⁻³ with the number of exceedances that are permitted (where applicable) and the equivalent percentile.

Table 13.1 Objectives included in the Air Quality Regulations 2000 and (Amendment)	
Regulations 2002 for the purpose of Local Air Quality Management	

_			
Pollutant	Air Quality Objective		Date to be
	Concentration	Measured as	achieved by
Benzene	_		
All authorities	16.25 μg/m³	running annual mean	31.12.2003
Authorities in England and Wales only	5.00 μg/m³	annual mean	31.12.2010
Authorities in Scotland and Northern Ireland only ^a	3.25 μg/m³	running annual mean	31.12.2010
1,3-Butadiene	2.25 μg/m ³	running annual mean	31.12.2003
Carbon monoxide Authorities in England, Wales and Northern Ireland only ^a	10.0 mg/m ³	maximum daily running 8-hour mean	31.12.2003
Authorities in Scotland only	10.0 mg/m ³	running 8-hour mean	31.12.2003
Lead	0.5 μg/m ³	annual mean	31.12.2004
	0.25 μg/m ³	annual mean	31.12.2008
Nitrogen dioxide ^b	200 µg/m ³ not to be exceeded more than 18 times a year	1 hour mean	31.12.2005
	40 μg/m ³	annual mean	31.12.2005
Particles (PM ₁₀) (gravimetric) ^c All authorities	50 μg/m ³ not to be exceeded more than 35 times a year	24 hour mean	31.12.2004
	40 μg/m³	annual mean	31.12.2004
Authorities in Scotland only ^d	50 μg/m ³ not to be exceeded more than 7 times a year	24 hour mean	31.12.2010
	18 μg/m ³	annual mean	31.12.2010
Sulphur dioxide	350 μg/m ³ not to be exceeded more than 24 times a year	1 hour mean	31.12.2004
	$125 \ \mu\text{g/m}^3$ not to be exceeded more than 3 times a year	24 hour mean	31.12.2004
	266 μg/m ³ not to be exceeded more than 35 times a year	15 minute mean	31.12.2005

a. Air Quality (Northern Ireland) Regulations 2003.

b. The objectives for nitrogen dioxide are provisional.

c. Measured using the European gravimetric transfer sampler or equivalent. d. These 2010 Air Quality Objectives for PM₁₀ apply in Scotland only, as set out in the Air Quality (Scotland) Amendment Regulations 2002.

11.1.2 Timescales to achieve the objectives for the pollutants in Air Quality Strategy In most local authorities in the UK, objectives will be met for most of the pollutants within the timescale of the objectives shown in Table 13.1. It is important to note that the objectives for NO₂ remain provisional. The Government has recognised the problems associated with achieving the standard for ozone and this will not therefore be a statutory requirement. Ozone is a secondary pollutant and transboundary in nature and it is recognised that local authorities themselves can exert little influence on concentrations when they are the result of regional primary emission patterns.

11.2 AIR QUALITY REVIEWS – THE APPROACHES AND EXPECTED OUTCOMES

Technical Guidance has been issued in 'Review and Assessment: Technical Guidance' LAQM.TG $(03)^3$ to enable air quality to be monitored, modelled, reviewed and assessed in an appropriate and consistent fashion. This updating and screening assessment has considered the procedures set out in this technical guidance.

The primary objective of undertaking a review of air quality is to identify any areas that are unlikely to meet national air quality objectives and ensure that air quality is considered in local authority decision making processes. The complexity and detail required in a review depends on the risk of failing to achieve air quality objectives and it has been proposed therefore that reviews should be carried out in two steps. Both steps of review and assessment may be necessary and every authority is expected to undertake at least a first stage review and assessment of air quality in their authority area. The steps are briefly described in the following table, Table 13.2.

Assessment process		
Level of Assessment	Objective	Approach
Updating and Screening	To identify those matters that have changed since the last review and assessment, which might lead to a risk of an air quality objective being exceeded	Use a checklist to identify significant changes that require further consideration. Where such changes are identified, than apply simple screening tools to decide whether there is sufficient risk of an exceedance of an objective to justify a Detailed Assessment
Detailed assessment	To provide an accurate assessment of the likelihood of an air quality objective being exceeded at locations with relevant exposure. This should be sufficiently detailed to allow the designation or amendment of any necessary AQMAs	Use quality-assured monitoring and validated modelling methods to determine current and future pollutant concentrations in areas where there is a significant risk of exceeding an air quality objective.
Annual Progress reports	Local authorities should prepare annual air quality Progress Reports between subsequent rounds of reviews and assessments. The concept is that this will ensure continuity in the LAQM process.	The precise format for the Progress Report has not yet been determined, but will essentially follow the checklist approach that is set out in subsequent chapters of this document. Further details on the Progress Reports will be provided via the Helpdesks by the middle of 2003. It is envisaged that these Progress Reports could be useful for the compilation of annual 'state of the environment' reports that many authorities already prepare.

Table 13.2Brief details of steps in the second Round of the Air Quality Review andAssessment process

The current deadline for completion of updating and screening assessments is May 2003, and for detailed assessments April 2004.

11.3 LOCATIONS THAT THE REVIEW AND ASSESSMENT MUST CONCENTRATE ON

For the purpose of review and assessment, the authority should focus their work on locations where members of the public are likely to be exposed over the averaging period of the objective. Table 13.3 summarises the locations where the objectives should and should not apply. **Table 13.3** Typical locations where the objectives should and should not apply

Table 13.3	Typical locations where the	e objectives should and shou	nu not apply
Averaging Period	Pollutants	Objectives <i>should</i> apply at	Objectives should <i>not</i> generally apply at
Annual mean	1,3 Butadiene Benzene Lead Nitrogen dioxide Particulate Matter (PM ₁₀)	All background locations where members of the public might be regularly exposed.	Building facades of offices or other places of work where members of the public do not have regular access.
		Building facades of residential properties, schools, hospitals, libraries etc.	Gardens of residential properties.
			Kerbside sites (as opposed to locations at the building facade), or any other location where public exposure is expected to be short term
24 hour mean and 8-hour mean	Carbon monoxide Particulate Matter (PM ₁₀) Sulphur dioxide	All locations where the annual mean objective would apply.	Kerbside sites (as opposed to locations at the building facade), or any other location where public exposure is expected to be short term.
		Gardens of residential properties.	

Table 13.3 (co		ions where the objectives should	
Averaging	Pollutants	Objectives should apply	Objectives should
Period		at	generally not apply at
1 hour mean	Nitrogen dioxide	All locations where the	Kerbside sites where the
	Sulphur dioxide	annual mean and 24 and	public would not be
		8-hour mean objectives	expected to have regular
		apply.	access.
		Kerbside sites (e.g.	
		pavements of busy	
		shopping streets).	
		Those parts of car parks	
		and railway stations etc.	
		which are not fully	
		enclosed.	
		Any outdoor locations to	
		which the public might	
		reasonably expected to	
		have access.	
15 minute	Sulphur dioxide	All locations where	
mean		members of the public	
		might reasonably be	
		exposed for a period of	
		15 minutes or longer.	

Table 13.3 (contd.) Typical locations where the objectives should and should not apply

It is unnecessary to consider exceedances of the objectives at any location where public exposure over the relevant averaging period would be unrealistic. Locations should also represent non-occupational exposure.

12 References

- 1. Part IV of the Environment Act 1995. Local Air Quality Management. LAQM.TG(03) January 2003.
- 2. The Air Quality (England) Amendment Regulations 2002, ISBN 0 11 044220 2.
- 3. DETR (2000b) The Air Quality Strategy for England, Scotland, Wales and Northern Ireland. Department of the Environment, Transport and the Regions. Cm 4548, SE 2000/3, NIA 7.
- 4. St Albans City and District Council (1999) First Stage Air Quality Review & Assessment., St Albans City and District Council, January 1999.
- 5. St Albans City and District Council (1999) Second Stage Air Quality Review & Assessment.
- St Albans City and District Council, July 1999
- 6. St Albans City and District Council, Stage 4 Assessment January 2003
- 7. St Albans City and District Council, Updating and Screening Assessment July 2003
- 8. St Albans City and District Council, Detailed Assessment March 2004
- 9. Maps of Estimated Ambient Air Pollution in 2001 and Projections for Other Years. http://www.airquality.co.uk/archive/laqm/tools.php
- 8. Design Manual For Roads and Bridges Highways Agency 2003

Appendices

CONTENTS

Appendix 1 Appendix 2

Monitoring data Detailed traffic flow data

Appendix 3 Emissions data

Appendix 4 Descriptions of selected models and tools

Appendix 5 AQMAs in St Albans

Appendix 1

Monitoring Data

CONTENTSTable A.1.1Diffusion Tube Monitoring SitesTable A.1.2Monthly NO2 Tube ConcentrationsTable A 1.3Monthly Benzene Tube Concentrations

R515100207700 SA01Museum of St Albans, Hatfield RoadB514100206500 SA02Holywell Hill, St AlbansB514900207400 SA03St Peters Street, St AlbansB516700209200 SA04Pondfield Crescent Marshalswick St AlB510100211800 SA05Ben Austins, RedbournB518600203500 SA06Ridgeview Hostel, Barnet Road, LondoB512000202200 SA07Waterdale, Bricket WoodB517400203900 SA08Bowmans Green JMI, Telford Rd, LondoR513500214300 SA09High Street, HarpendenB514400214300 SA10Crabtree Lane, Harpenden	on Colney Ion Colney
B514900207400 SA03St Peters Street, St AlbansB516700209200 SA04Pondfield Crescent Marshalswick St AlB510100211800 SA05Ben Austins, RedbournB518600203500 SA06Ridgeview Hostel, Barnet Road, LondoB512000202200 SA07Waterdale, Bricket WoodB517400203900 SA08Bowmans Green JMI, Telford Rd, LondoR513500214300 SA09High Street, Harpenden	on Colney Ion Colney
B516700209200 SA04Pondfield Crescent Marshalswick St AlB510100211800 SA05Ben Austins, RedbournB518600203500 SA06Ridgeview Hostel, Barnet Road, LondoB512000202200 SA07Waterdale, Bricket WoodB517400203900 SA08Bowmans Green JMI, Telford Rd, LondoR513500214300 SA09High Street, Harpenden	on Colney Ion Colney
 B 510100 211800 SA05 Ben Austins, Redbourn B 518600 203500 SA06 Ridgeview Hostel, Barnet Road, Londo B 512000 202200 SA07 Waterdale, Bricket Wood B 517400 203900 SA08 Bowmans Green JMI, Telford Rd, Londo R 513500 214300 SA09 High Street, Harpenden 	on Colney Ion Colney
 B 518600 203500 SA06 Ridgeview Hostel, Barnet Road, Londo B 512000 202200 SA07 Waterdale, Bricket Wood B 517400 203900 SA08 Bowmans Green JMI, Telford Rd, Londo R 513500 214300 SA09 High Street, Harpenden 	lon Colney
 B 512000 202200 SA07 Waterdale, Bricket Wood B 517400 203900 SA08 Bowmans Green JMI, Telford Rd, Lond R 513500 214300 SA09 High Street, Harpenden 	lon Colney
B 517400 203900 SA08 Bowmans Green JMI, Telford Rd, Lond R 513500 214300 SA09 High Street, Harpenden	
R 513500 214300 SA09 High Street, Harpenden	
	oourn
P E14400 214200 CA10 Crabtrog Lang Harpondon	ourn
	ourn
B 512800 210200 SA11 Redbourn JMI, Crouch Hall Lane, Redb	
B 512800 202200 SA12 Ashridge Drive, Bricket Wood	
R 517700 214100 SA13 Wheathampstead High Street	
B 517500 213900 SA14 Adult Ed. Centre, Butterfield, Wheatha	ampstead
R 514700 207100 SA15 Peahen PH, Holywell Hill, St Albans	
B 513600 204400 SA16 Tippendell Lane, St Albans	
B 517700 204700 SA17 London Colney Roundabout	
B 513900 208100 SA18 Batchwood Drive, St Albans	
B 516541 207359 SA20 Fleetville C. Centre 1, Royal Rd, St All	bans (SA1)
B 513317 202665SA21 Lye Lane, Bricket Wood	
- 509434 212800 SA22 Lybury Lane	
- 509024 212779 SA23 St Agnells	
- 509117 214082 SA24 Redding Lane	
- 511353 203756 SA25 Searches Farm	
- 512569 202728 SA26 Oakwood Road	
- 512690 202713 SA27 Five Acres Avenue, Bricket Wood	
 513022 202624 SA29 Meadow Close, Bricket Wood 	
- 515390 202564 SA30 Smug Oak Lane	
- 515297 202774 SA31 Radlett Road	
- 514900 203852 SA32 Sycamore Drive, Park Street	
 514650 204549 SA33 Mount Drive, Park Street 	
B 516541 207359 SA34 Fleetville C. Centre 2, Royal Rd, St All	
B 516541 209359 SA35 Fleetville C. Centre 3, Royal Rd, St All	oans (SA1)
520092 206676 SA37 Sleapcross Gardens	

Table A1.1 Diffusion Tube Monitoring Site Details in St Albans

Туре	Code	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec	Mean
R	SA01	42.0	45.8	45.8	34.4	28.7	21.0	36.3	32.5	22.9	42.0	40.1	45.8	36.4
В	SA02	28.7	30.6	30.6	30.6	15.3	19.1	17.2		22.9	32.5	24.8	34.4	26.0
В	SA03	32.5	38.2	38.2	32.5	21.0	24.8	24.8	24.8	15.3	34.4	42.0	38.2	30.6
В	SA04	26.7	30.6	30.6	22.9	15.3	15.3	15.3	15.3	15.3	28.7	24.8	34.4	22.9
В	SA05	24.8	28.7	26.7	24.8	17.2	21.0	19.1	22.9	22.9	28.7	30.6	30.6	24.8
В	SA06	34.4	36.3	42.0	40.1	26.7	34.4	26.7	26.7	22.9	40.1	36.3	38.2	33.7
В	SA07	47.8	51.6	49.7	43.9	38.2	36.3	34.4	36.3	30.6	43.9	55.4	51.6	43.3
В	SA08	36.3	38.2	40.1	32.5	21.0	28.7	22.9	22.9	21.0	42.0	32.5	40.1	31.5
R	SA09	40.1	51.6	49.7	43.9	26.7	38.2	32.5	30.6	30.6	38.2	42.0	45.8	39.2
В	SA10	30.6	40.1	34.4	22.9	15.3	17.2	17.2	21.0	13.4	30.6	30.6	36.3	25.8
В	SA11	30.6	32.5	38.2	24.8	17.2	21.0	19.1	21.0	17.2	24.8	32.5	34.4	26.1
В	SA12	30.6	40.1	36.3	32.5	22.9	26.7	22.9	24.8	19.1	26.7	36.3	36.3	29.6
R	SA13	30.6	32.5	36.3	32.5	22.9	24.8	22.9	22.9	22.9		30.6	32.5	28.3
В	SA14						15.3							
R	SA15													
В	SA16						28.7							
В							28.7							
В							17.2							
В	SA20													
В	SA21													
-	SA22	45.8	57.3	53.5	51.6	42.0	43.9	45.8	26.7	36.3	57.3	28.7	42.0	44.2
-	SA23	30.6	38.2				22.9							27.8
-	SA24						24.8							
-	SA25						42.0							
-	SA26				40.1			30.6		30.6				36.7
-	SA27	32.5					24.8							32.2
-	SA29						28.7					-	40.1	33.4
-	SA30						49.7							
-	SA31						40.1							
-	SA32						28.7			26.7				
-	SA33						45.8							
В	SA34						21.0							
В	SA35						19.1							
	SA37	36.3	42.0	43.9	38.2	28.7	32.5	30.6	26.7	32.5	45.8	34.4	42.0	36.1

Table 1.2 Measured (uncorrected) monthly average NO₂ concentrations (μ gm⁻³) at sites in St Albans City and District in 2005

AEAT/ENV/R/2183

	August S	Septembe	r October N	lovembe	r Decembei	January I	Mean
Harpenden High St	0.8	1.4	0.8	0	1.6	1.7	1.1
London Colney	0.6	0.9	0.7	0	1.1	1	0.7
Fleetville	0.9	-	0.6	0	1.3	1	0.8
Peahen	1.6	1.4	1.5	0	2	2.3	1.5
Eaton Lodge	0.8	0.9	0.7	0	1.1	1.1	0.8
Cherry Tree Lodge	1.2	1.1	0.4	0	1.1	1.2	0.8

Table 1.3 Measured monthly average benzene concentrations (µgm⁻³) at sites in St Albans City and District in 2004-2005

Appendix 2

Traffic Flow Data

CONTENTS	
Table 2.1	Road classifications in LAQM TG(03) ¹
Table 2.2	Traffic Flow Data from the NAEI Data Warehouse
Table 2.3	Traffic Flow data supplied by St Albans City and District Council

	Table A2.1 Road classifications in LAQM TG(03) ¹
Very busy roads	Single carriageway roads with daily average traffic flows which exceed 80,000 vehicles per day.
	Dual carriageway (2 or 3-lane) roads with daily average traffic flows which exceed 120,000 vehicles per day.
	Motorways with daily average traffic flows which exceed 140,000 vehicles per day.
Busy Road s	Roads with more than 30,000 vehicles per day.

Explanation of the data	fields in table A2.2
Rd_no	Number of the road
х	Grid reference Easting
у	Grid reference Northing
All_vehicles	AADF Total
CAR	AADF Cars
BUS	AADF Buses
LGV	AADF Light Goods Vehicles
HGV	AADF HGVs
Moto	AADF Motorcycles
PB	Built-up primary road
AADF	Annual Average Daily Flow

<u>A 2.2 T</u>	A 2.2 Traffic Flow Data from the NAEI Data Warehouse 2004								
Rd_no	x ۱	()	All (CAR	BUS	LGV	HGVr	HGVa	Moto
M10	514220	205140	25111	20417	73	1964	1371	1151	135
A5183	510050	213700	20437	17379	129	2247	512	59	111
A5183	514270	205600	11822	9820	102	1318	400	36	146
A1081	514330	211200	15877	13650	141	1527	405	15	139
A1057	520000	207891	16685	13682	195	1713	717	135	243
A5183	511849	210111	16015	13864	161	1500	317	40	133
A1081	514870	207416	14107	11210	731	1597	379	28	162
A414	520332	206751	39693	31935	181	4276	1701	1344	256
A4147	513280	207000	27664	24758	228	1900	515	38	225
M1	509757	207000	171633	129690	876	18326	8107	13680	954
A5	508606	215000	23945	17657	130	3505	1085	1328	240
A5183	513919	207756	17193	15005	160	1445	401	19	163
A1081	513610	213640	20772	18510	64	1512	517	29	140
A1081	518500	204000	23758	18475	118	2541	1353	1054	217
A405	513610	203980	25059	20245	145	2395	1282	679	313
M25	512500	203110	98583	71528	140	10957	5691	9909	358
M1	509100	215300	134252	101090	837	13752	5977	11927	669
A1081	515000	207700	18640	15685	272	2166	291	23	203
A4147	514100	207700	10247	8876		1025	157	12	93
M25	516216	202781	120469	86115			6750		348
M1	511254	204604	146522	109273	803		6736		
A1081	516000	206150	15277	13136			291		
A414	515000	204864	50831	41034			1946		490
A5183	514318	207546	7954	6839	39		156		
M1	509700	210500	144275	105654			6734		855
A5183	511030	211994	25070	21500			464		
A1081	510000	216980	16879	14841	117		297		
A4147	510000	206019	10457	9046	133		234		
M1	509175	207600	47306	37798	139		2121	1535	
A5	509255	214650	23947	17658	130		1085		
A1081	513770	212500	15493	13413	118	1444	386		
A1081	512940	215000	18933	16466			358		
A5183	514660	204500	12222	9727			686		
A405	514000	204660	25479	20346			1363		
A1057	516000	207260	10094	8479	359		190		
A1081	515000	208470	10018	8609	102		226		
A5183	514665	207000	17699	15414	279	1420	375	38	173

Road	Location of link	road type	speed type	2005 Annual Average Weekday Flow
M1	Junction 6a-7, Bedmond	Motorway	Rural	141137
M1	Junction 8-9, Hemel Hempstead	Motorway	Rural	137272
M10	Junction 1-2, Park Street	Motorway	Rural	25218
A5183	Watling Street, St Albans	Other A Road	Rural	11284
A5183	Watling Street, St Albans	Other A Road	Urban	16152
A5183	Holywell Hill, St Albans	Other A Road	Urban	19082
A5183	Redbourn Road, Redbourn	Other A Road	Rural	14616
A5	Watling St, Markyate	Trunk Road	Rural	21516
A1081	Bypass, London Colney	Other A Road	Rural	23514
A1081	Harpenden Road, Harpenden	Other A Road	Rural	16751
A1081	Luton Road, Harpenden	Other A Road Primary A	Rural	18012
A405	North Orbital Road, The Noke, St Albans	Road Primary A	Rural	43719
A414	North Orbital Road, Park Street	Road Primary A	Rural	43209
A414	North Orbital Road, Hatfield	Road	Rural	41702
A1081	London Road, St Albans	Other A Road	Urban	25842
B4630	Watford Road, St Albans	B road Primary A	Urban	21196
A414	Breakspear Way, Hemel H	Road	Rural	48845
A1057	Hatfield Road, Smallford, St Albans	Other A Road	Urban	14939
B487	Redbourn Lane, Harpenden	B road	Rural	16342
B487	Hemel H. Road, Redbourn	B road	Rural	16188
B556	Harper Ln, London Colney	B road	Rural	10941
B5378	Shenley Lane, London Colney	B road	Urban	9609
B653	Lower Luton Road, Batford	B road	Rural	12619
C94	Wheathampstead Rd, Wheathampstead	C Road	Rural	9011
C62	Marshalswick Lane, St Albans	C Road	Urban	15248
C62	Batchwood Drive, St Albans	C Road	Urban	16919
C98	King Harry Lane, St Albans	C Road	Urban	17473
<u>A414</u> 7	Bluehouse Hille, St Albans	Other A Road	Rural	23923

Table A2.3 Traffic Flow Data for local roads in St Albans City and District 2005 suppliedby HertfordshireCounty Council

Appendix 3

Emissions Data

CONTENTS Table A3.1 Table A3.2

Part A and B Processes in St Albans (excluding petrol stations) Petrol Stations in St Albans

Part A/Part B Ref	Company	Comment
Part A	-	No Part A processes
Part B		
1/92	St Albans City Hospital,	Clinical Waste Incinerator
3/93	Lafarge Redlands Aggregates Ltd	Roadstone Coating Process
4/93	Lafarge Aggregates Ltd	Blending & Use of Bulk Cement
5/93	C D Bramall Ltd	Respraying of Road Vehicles
6/93	RMC Readymix,	Blending & Use of Bulk Cement
7/93	Lafarge Redlands Readymix Ltd,	Blending & Use of Bulk Cement
9/93	Welgan Motor Bodies,	Respraying of Road Vehicles
11/93	Brian Robson Coachworks,	Respraying of Road Vehicles
14/96	Home Pac Ltd,	Timber Process
15/96	T W Russell Ltd	Respraying of Road Vehicles
16/96	Kanes Haulage Ltd	Mobile Crusher
17/96	Hayward Coachworks,	Vehicle Respraying
19/93	CD Bramall Ltd	Respraying of Road Vehicles
20/98	Clifford Accident Repair Centre	Paint Spraying
WOB/2/94	Mr G Barlow,	Waste Oil Burner
WOB/3/94	Frank Follet Motors Ltd,	Waste Oil Burner
WOB/4/94	J D Thompson Motors Ltd,	Waste Oil Burner

Table A3.1 Part A and B Processes in St Albans (excluding petrol stations)

Table A3.2 Petrol stations in St Albans District

Petrol Stations				
VOC/01/98	Sainsbury`s Supermarkets Ltd			
VOC/03/98	Safeway Petrol Station			
VOC/06/98	TotalFinaElf			
VOC/08/98	Townsend Service Station			
VOC/09/98	Greenlawns Garage, Bowers Leisure			
VOC/10/98	Lawrence Auto Services			
VOC/11/98	Star St Albans Marshalswick			
VOC/12/98	Shell UK Ltd, Shell			
VOC/13/98	Shell UK Ltd, Shell Petrol STation			
VOC/14/98	TotalFinaElf			
VOC/15/98	St Albans Service Station			
VOC/16/98	Leaside Service Station			
VOC/17/98	TotalFinaElf			
VOC/18/98	St Albans Service Station			
VOC/20/98	Shell UK Ltd, Shell Service Station (Smallford)			
VOC/19/98	Shell UK Ltd, Shell Service Station			
VOC/21/98	Mount Service Station			
VOC/22/98	Classic Service Station			
VOC/26/98	Radlet Road Service Station			
VOC/27/00	Savacentre London Colney			

netcen 90

Appendix 4

Descriptions of selected models and tools

CONTENTS

Simple screening models Design Manual for Roads and Bridges (DMRB)

Simple screening models³

Design Manual for Roads and Bridges (DMRB) - This screening method was formulated by the former Department of Transport. The method gives a preliminary indication of air quality near roads. The DMRB method requires information on vehicle flow, HDV mix, vehicle speed and receptor-road distances. It contains a useful database of vehicular emission factors for future years.

The method adopts the annual mean concentration as the base statistic. Background pollutant levels are included explicitly in the calculations by adding an amount to the annual mean traffic contribution using the Air Quality Archive (paragraph 6.09) or default values The model also estimates, from the annual mean PM₁₀ prediction, the number of days where the PM₁₀ concentration exceeds the 50µg m⁻³ daily mean objective. The latest version of the DMRB nomogram (1.02, dated February 2003) has been used for this assessment. Details of the road layout cannot be specified.

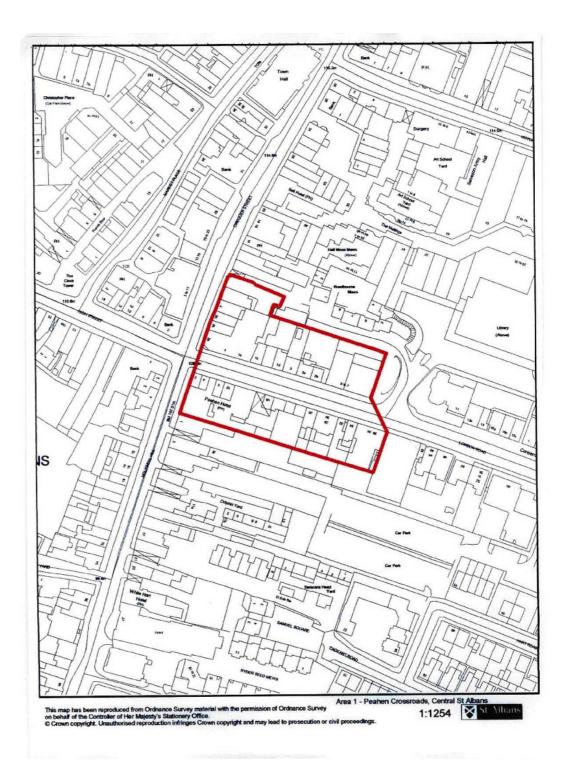
³ The information on simple screening models has been taken from LAQM.TG3 Review and Assessment: *Selection and use of dispersion models*.

Appendix 5

Air Quality Management Areas

CONTENTS

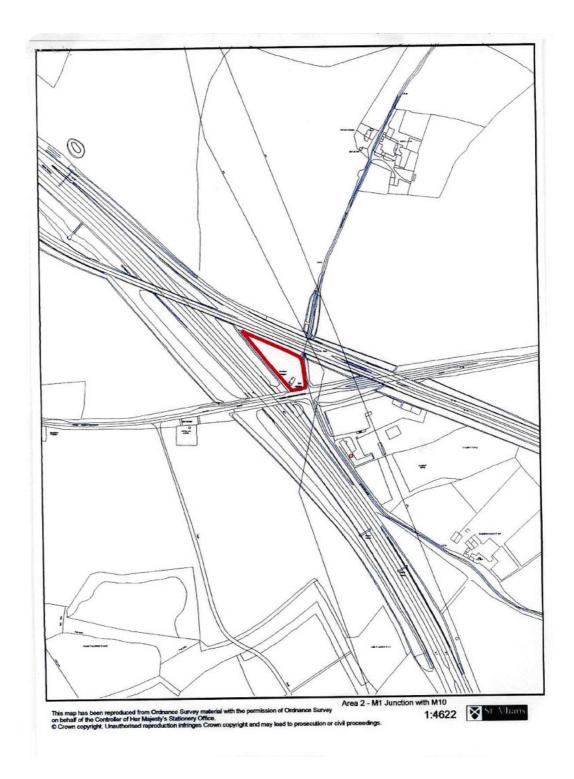
AQMA 1 AQMA 2 AQMA 7


Air Quality Management Area No. 1

Description:

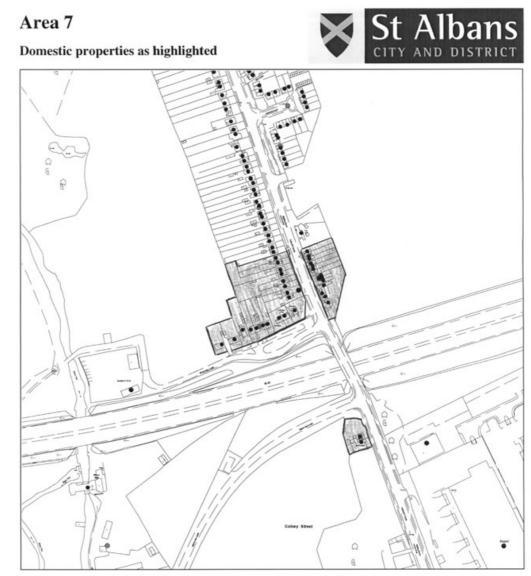
The area comprising of odd numbers 1-7 London Road and even numbers 2-38 London Road, St Albans.

Pollutants Declared:


Nitrogen dioxide (NO₂)

Air Quality Management Area No. 2

Description: The area comprising of Beechtree Cottages, Hemel Hempstead Road, St Albans (adjacent to junction of M1 (J7) and M10).


Pollutants Declared: Nitrogen dioxide (NO₂)

Air Quality Management Area No. 7

Description: An area encompassing a number of domestic properties in Frogmore and Colney Street in the vicinity of the M25.

Pollutants Declared: Nitrogen dioxide (NO₂)

Scale: 1:3294

Reproduced from the Ordnance Survey map with the permission of the Controller of Her Majesty's Stationery Office © Crown Copyright 2000.

Unauthorised reproduction infringes Crown Copyright and may lead to prosecution or civil proceedings.

Organisation	Not Set	
Department	Not Set	
Comments	E	
Date	07 August 2002	
SLA Number	Not Set	

Produced using ESRI (UK)'s MapExplorer 2.0 - http://www.esriuk.com