

FLOOD RISK ASSESSMENT & DRAINAGE STRATEGY

For

PROPOSED DEVELOPMENT AT BURSTON GARDEN CENTRE, ST ALBANS, AL2 2DS

REF : IR20077/DS1

SEPTEMBER 2020

Prepared by : Intrado Castle House, 63/69 Cardiff Road Taffs Well, Cardiff. CF15 7RD Tel: 02920 811097 Email : admin@intrado.co.uk

Status		Prepared		Checked		Approved	
Issue	Rev	Name	Date	Name	Date	Name	Date
First		C L Cooke	06/10/2020	D Sparkes	06/10/2020	C L Cooke	07/10/2020
Second	А	C L Cooke	04/12/2020	D Sparkes	04/12/2020	C L Cooke	04/12/2020
Third							

1.	Introduction	1
2.	The Site	2
3.	Assessment of Flood Risk	3
4.	Existing Surface Water	5
5.	Proposed Surface Water	5
6.	Foul Drainage	7
7.	Principal Operation and Maintenance Requirements	8
8.	Conclusions1	5
9.	Appendix A1	6
10.	Appendix B1	7
11.	Appendix C1	8

1. Introduction

Intrado Consulting Engineers have been appointed to undertake a Flood Risk Assessment (FRA) and Drainage Strategy in support of a circa 3.7 hectare proposed care village development.

This report is produced for the sole benefit of Castleoak Care Partnership from whom it was commissioned and has been prepared in response to their particular requirements and brief. This strategy may not be relied upon by any other party.

The Contracts (Rights of Third Parties) Act 1999 shall not apply to this report and the provisions of the said Act are expressly excluded from this report. This strategy may not be used for any purpose other than that for which it was commissioned.

This report may not be reproduced and/or made public by print, photocopy or any other means without the prior written permission of Intrado Ltd.

2. The Site

The proposals are for the construction of 45 bungalows and 80 assisted living apartments on the site of the existing site of Burston Garden Centre. The site address is North Orbital Road, St Albans, AL2 2DS at National Grid Reference 513690 203660, refer to Figure 2.1. The site has an area of approx. 3.7Ha

Figure 2-1 – Site Location

intrado Consulting Engineers

3. Assessment of Flood Risk

3.1 Potential Sources of Flooding

There are a number of potential sources of flooding and these include flooding from:

- rivers or fluvial sources;
- the sea or tidal sources;
- surface water or pluvial sources;
- groundwater;
- sewers; and
- reservoirs, canals, and other artificial sources.

٠

The flood risk from each of these potential sources is discussed below.

3.1.1 Flooding from Rivers or Fluvial Flooding and Sea or Tidal Flooding

The Environment Agency "Flood Map or Planning" shows the site is at low risk (less than 1 in 1000 annual probability of river flooding).

© Environment Agency copyright and / or database rights 2018. All rights reserved. © Crown Copyright and database right 2018. Ordnance Survey licence number 100024198.

Figure 3-1 – Environment Agency 'Flood Map For Planning"

3.1.2 Flooding from Surface Water or Pluvial Flooding

Environment Agency "Flood Map for Planning". The mapping shows the site is not at a risk of flooding from surface water.

3.1.3 Flooding from Groundwater

On review of Dacorum Borough Council St Albans City & District Council Three Rivers District Council Watford Borough Council Strategic Flood Risk Assessment Volume I August 2007 there does not appear to be any know ground water issues on the site or the nearby areas.

3.1.4 Flooding from Sewers

There are no surface water or combined sewers within the proximity of the site.

3.2 Flood Risk Summary

A summary of the potential sources of flooding and the flood risk arising from them is presented in Table 3-1

Potential Sources Of Flooding	Significant Flood Risk at the Site (Y/N)
Rivers or Fluvial Flooding	Ν
Sea or Tidal Flooding	Ν
Surface Water or Pluvial Flooding	Ν
Groundwater	Ν
Sewers	Ν
Reservoirs, Canals and other Artificial Sources	Ν

Table 3-1 – Summary of the Potential Sources of Flooding

The site is therefore considered to be entirely within Flood Zone 1, at low risk of flooding and suitable for a vulnerable development as detailed in Table 3 of NPPG.

4. Existing Surface Water

The site has both greenfield and brownfield areas. The survey by Clifton Surveys has recorded some of the existing surface water sewers where the surface water system discharges to the ditch/watercourse at the south west boundary. The existing surface water discharges at an uncontrolled rate.

The total site consists of circa 3.6ha of which 0.8ha is impermeable - buildings, greenhouses, hardstanding, and other structures. The remainder of the site is soft landscaping. The Wallingford method was utilised to calculate the combined runoff rate for the greenfield run off with the results as shown in the Table 4-1.

Return Period	Greenfield Discharge Rate
	(l/s)
1	8.9
30	21.7
100	27.9

Table 4-1	Greenfield	Run	off	Rates
-----------	------------	-----	-----	-------

5. Proposed Surface Water

The proposed development is for 45 bungalows and 80 assisted living apartments with associated access road and parking areas. The impermeable areas of the proposed development are 1.08ha.

SuDS Design Guidance for Hertfordshire March 2015 is guidance for developers involved in the design and development of SuDS in Hertfordshire. It promotes an integrated approach to SuDS and landscape design and establishes a set of local design criteria to help shape the development of SuDS in respect of the County's unique environmental context. The contents of which has been used to inform the current design.

The surface water will be designed for 100-year storm event with a 30% climate change allowance as indicated within section 7.2.5 of the Suds Design Guidance for Hertfordshire document. A 10% increase to allow for urban creep has also been included in the calculations.

It is proposed to manage the surface water run-off from the development via the following interception mechanisms as summarised in Table 5-1.

SuDS Management Train Mechanism	Application	Potential Suitable Suds Features
Source Control	For the interception of surface water run-off at the source.	Permeable pavement
Conveyance	To convey surface water run-off from 'Source Control' mechanisms to 'Site Control'	Swales Permeable pavement
Site Control	Provides the required surface water attenuation prior to controlled discharge to the culvert	Swales Permeable pavement Attenuation basins

The current design has four attenuation basins, permeable paving and swales to provide conveyance and storage within the management train. Hydrobrakes and orifice plates are present within the system to hold the water in each feature maintaining the 10 l/s discharge into the ditch. The holding of water in open storage features will allow some of the surface water run off to be lost via evapotranspiration.

The micro drainage calculations for all storm events up to and including the 100 year event plus 30% climate change and 10% urban creep are in Appendix A.

A summary of the results is in Table 5-2 below.

Return Period	Greenfield Discharge Rate
	(l/s)
1	8.2
30	9.9
100 + 40%	9.9

Table 5-2 Post Development Run off Rates

In accordance with Section 26 of the SuDS manual, the surface water run off generated from the buildings, car park and access are considered to have a low pollution hazard level (see Table 5-3).

Land Use	Pollution	Pollution Hazard Indices			
	Hazard Level	Total Suspended Metals		Hydro-Carbons	
		Solids (TSS)			
Non-Residential Car	Low	0.5	0.4	0.4	
Park					
Low traffic					
Roads<300	Low	0.5	0.4	0.4	
movements per day					
Residential Roof	Very Low	0.2	0.2	0.05	

Table 5-3 - Pollution Hazard Potential for Proposed Development

Type of SuDS	Mitigation Indices				
component	Total Suspended Solids (TSS)	Metals	Hydro-Carbons		
Pervious Pavement	0.7	0.6	0.7		
Swale	0.5	0.6	0.6		
Detention Basin	0.5	0.5	0.6		

Table 5-4 – Mitigation Indices

The SuDS mitigation indices, Table 5.4, are therefore sufficient to deal with the pollution levels with one treatment stage. However, in the majority of cases there are two and sometimes three treatment stages.

The attenuation features aim to, as far as practicably possible, prevent discharge from the site for the majority of rainfall events less than 5mm. Refer to Appendix B for the proposed drainage layout.

The management of the surface water at the surface provide us with opportunities to add both amenity biodiversity value to the development. The harder SuDS features such as permeable paving are used to provide parking areas for the residents within the streets and courtyards. Softer SuDs features such as the attenuation basins and swales are within the green open spaces and woodland walks. The Quantity Data Template from SuDS Design Guidance for Hertfordshire can be found in Appendix C.

6. Foul Drainage

The nearest public foul system is in the North Orbital road to the north east of the site. From the site levels on the topographical survey, it will be necessary to have an on-site pumping station to pump the flows up to the public sewer. From the information available to date further survey work and liaison with Thames Water to determine the point of connection of the foul sewer.

7. Principal Operation and Maintenance Requirements

The drainage design has considered the construction of the drainage elements. They can all be constructed by a competent contractor with minimal risk in terms of Health & Safety.

7.1 Pervious Pavement

The permeable paving will be Tobermore paving or similar approved. The indicative maintenance costs of the permeable paving as supplied by Tobermore are $\pm 0.5 - \pm 1$ per m³ of storage volume.

Permeable paving lasts 20-25 years before requiring replacement of filter material. This is one of the longest lifespans of all SUDS options (Understanding permeable and impermeable surfaces, 2009, p.25).

Tobermore has advised that research has concluded that the infiltration capacity of a newly installed Hydropave Concrete Block pavement is over 4,000mm per hour. The bedding course and sub-base aggregates will have even higher infiltration capacity. The UK guidelines require the infiltration rate of the surface joints to be 400mm and hour which is only 10% of the actual rate of newly installed permeable paving. Even allowing for clogging over the long term there is a large factor of safety built in.

The permeable paving loading category is 2 -Car parking with zero standard axles (refer to Figure 7-1) provided by Tobermore. Permeable paving is proposed car parking areas only (refer to drawing IR18101-203 P2 for details).

1 DOMESTIC PARKING	2 CAR	3 PEDESTRIAN	4 Shopping	5 COMMERCIAL	6 HEAVY TRAFFIC
No Large Goods Vehicles	Emergency Large Goods Vehicles only	One Large Goods Vehicle per week	Ten large Goods Vehicles per week	100 Large Goods Vehicles per week	1000 large Goods Vehicles per week
Zero standard axles	100 standard axles	0.015msa	0.15msa	1.5msa	15msa
Patio	Car parking bays and aisles	Town/city pedestrian street	Retail development delivery access route	Industrial premises	Main road
Private drive	Railway station platform	Nursery access	School/ college access road	Lightly trafficked public road	Distribution centre
Decorative feature	External car showroom	Parking area to residential development	Office block delivery route	Light industrial development	Bus station (bus every 5 minutes)
Enclosed playground	Sports stadium pedestrian route	Garden centre external display area	Deliveries to small residential development	Mixed retail/ industrial development	Motorway Truck Stop
Footway with zero vehicle overrun	Footway with occasional overrun	Cemetery Crematorium	Garden centre delivery route	Town square	Bus stop
	Private drive/ footway crossover	Motel parking	Fire station yard	Footway with regular overrun	Roundabout
		Airport car park with no bus pickup	Airport car park with bus to terminal	Airport landside roads	Bus lane
		Sports centre	Sports stadium access route/ forecourt		

msa = millions of standard 8,000 kg axles.

Figure 7-1 – Loading Category from Tobermore.

Construction considerations

Sub-base material (coarse graded aggregate) should be placed in layers not exceeding 150mm in thickness or twice the nominal maximum aggregate size. Unlike traditional pavement construction, the open-graded materials should not be fully compacted to eliminate any voids, as this will compromise the performance of the system.

It is likely that excessive compaction will result in the displacement of the open graded aggregate by the compaction equipment. The open-graded material should be compacted such that its maximum density is achieved for the particular aggregate type and grading without compromising the final void percentage offered by the material.

Each layer should be suitably compacted before the next layer is placed to prevent any potential settlement of the pavement after completion.

Due to the nature of both the sub-layers and the block paving, care should be taken during the construction process to prevent dirt or detritus contaminating the sub-base and compromising the permeability of the system. For example, the trafficking of the sub-base as a site access route should not be undertaken. Should other construction or maintenance work take place close to the pavement which may affect the infiltration of the pavement, suitable protective measures should be implemented.

Edge restraints should be sufficiently robust to resist the lateral displacement from imposed loadings placed upon the pavement. The edge restraint may take the form of associated fittings, walls or buildings or be formed from precast concrete, clay or natural stone kerb systems, either existing or newly constructed features. The restraint must provide a consistent vertical face to a level below the laying course material.

Maintenance Schedule **Required Action Minimum Frequency** Routine visual In general, routine visual inspections are all that Once a year during or following inspections is required to determine whether or not remedial heavy rainfall. maintenance is required. Any infiltration issues are shown up by water ponding on the surface of the paving. If ponding is not visible, then remedial action is not required. If ponding is visible see section on Remedial Action for ponding. In the unlikely event that individual blocks are damaged these should be removed and replaced. Brushing with soapy water and a stiff brush will **Regular Maintenance** Once a year, after autumn leaf fall, revive the colour of concrete block permeable or reduced frequency as required, paving. For a deeper clean of the block surface a based on site-specific observations pressure washer can be used to maintain the of clogging or manufacturer's appearance and colour of the paving blocks. A recommendations – pay particular pressure washer set to a light / medium pressure attention to areas where water runs should be all that is required to remove general onto pervious surface from adjacent dirt and grime. High pressure should not be impermeable areas as this area is used as this can damage the surface of the most likely to collect the most blocks. sediment.

Further site-specific requirements will be provided to the contractor once the order has been placed. A recommended operation and maintenance plan for areas of pervious pavement is summarised in Table 7-1.

intrado Consulting Engineers

	Tips: Hold the lance of the pressure washer at a 30 to 45-degree angle to the paved surface to avoid removal of the jointing material. After cleaning is finished, ensure that any jointing material which has been removed is top up with the correct material.	
Occasional Maintenance	Stabilise and mow contributing and adjacent areas.	As required.
	Weeds tend not to establish in areas which receive regular trafficking by vehicles. If weeds are an issue, they can be dealt with by using a weed killer containing Glyphosate. The manufacturer's instructions should always be followed, and adequate Health & Safety measures should also be put in place when handling chemicals.	As required – once per year on less frequently used pavements.
Remedial Actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of the level of the paving.	As required.
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to uses, and replace lost joining material.	As required.
	Rehabilitation of surface and upper substructure by remedial sweeping.	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging).
Monitoring	Initial inspection.	Monthly for three months after installation.
	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action.	Three-monthly, 48h after large storms in first six months.
	Inspect silt accumulation rates and establish appropriate brushing frequencies.	Annually.

Table 7-1 - Typical Pervious Pavement Operation and Maintenance Requirements

Guidelines to minimise maintenance and ensure the long-term performance of Hydropave Permeable Paving.

Pre- construction (Design stage)

It is essential that the system is designed correctly by a qualified engineer (refer to BS 7533 Part 13). The design and detailing of the project should ensure that soil from soft landscaping is prevented from spilling onto the paving.

During construction.

It is essential that the paving is installed by an experienced contractor who is familiar with installing permeable paving and its components (refer to BS7533 Part 3).

Mud / soil and other contaminants should be prevented from entering the sub-base, bedding course and jointing aggregates.

Do not allow muddy construction traffic to use the paved area once completed. Do not allow soft landscaping to spill onto the paving surface

After construction.

Do not store materials which may clog up the permeable joints such as soil and mulch on top of the paving. The joints between to permeable paving should be filled to the top with the correct aggregate.

7.2 Swales

The proposed drainage scheme will utilise a swales area as a mechanism for collection, treatment and conveyance of surface water runoff. The anticipated maintenance and management for the swales associated with the surface water drainage system in outlined in Table 7-2

Maintenance Schedule	Required Action	Minimum Frequency
Regular maintenance	Remove litter (including leaf litter) and debris.	Monthly (or as
		required).
	Cut grass to sides – to retain grass height within specified	Monthly (during
	design range.	growing season) or as
		required.
	Manage other vegetation and remove nuisance plants.	Monthly at start then
		as required.
	Inspect inlets and outlets and overflows for blockages, and	Monthly.
	clear if required.	
	Inspect vegetation coverage.	Monthly for 6 months,
		quarterly for 2
		years, the half
		yearly.
	Inspect inlet and facility surface for silt accumulation, establish	Half Yearly.
	appropriate silt removal frequencies.	
Occasional	Reseed areas of poor vegetation growth, alter plant types to	As required or if bare
Maintenance	better suit conditions, if required.	soil is exposed over
		10% or more of the
		treatment area.
Remedial Actions	Repair erosion or other damage by re-turfing or reseeding.	As required.
	Remove and dispose of oils or petrol residues using safe	As required.
	standard practices.	

Table 7-2 Typical Swale Operation & Maintenance Requirements

7.3 Attenuation Basin

The proposed drainage scheme will utilise a detention/bioretention area as a mechanism for collection, treatment and attenuation of surface water runoff. The anticipated maintenance and management for the detention basin associated with the surface water drainage system in outlined in Table 7-3.

Maintenance Schedule	Required Action	Minimum Frequency
Regular maintenance	Remove litter (including leaf litter) and debris	Monthly (or as
		required)
	Cut grass to sides – to retain grass height within specified	Monthly (during
	design range.	growing season) or
		as required.
	Manage other vegetation and remove nuisance plants.	Monthly at start then
		as required.
	Inspect inlets and outlets and overflows for blockages, and	Monthly
	clear if required.	
	Inspect vegetation coverage.	Monthly for 6 months,
		quarterly for 2 years,
		the half yearly.
	Inspect inlet and facility surface for silt accumulation, establish	Half Yearly
	appropriate silt removal frequencies.	
Occasional	Reseed areas of poor vegetation growth, alter plant types to	As required or if bare
Maintenance	better suit conditions, if required.	soil is exposed over
		10% or more of the
		treatment area.
Remedial Actions	Repair erosion or other damage by re-turfing or reseeding.	As required
	Remove and dispose of oils or petrol residues using safe	As required
	standard practices.	

Table 7-3 Typical Attenuation Basin Operation & Maintenance Requirements

7.4 Underground Piped Systems

A recommend operation and maintenance plan for the piped drainage network is summarised in Table 7-4

Maintenance Schedule	Required Action	Minimum Frequency
Regular maintenance	Ensure drainage intakes are clear or debris/silt.	Monthly (or as
		required).
Occasional	Clear gully pots.	6 monthly.
Maintenance	Jet clean sewer lines, gully tails and kerb channels to remove	Every 2 years.
	grease, grit, sediment and other debris to ensure conveyance	
	capacity is not compromised.	
	Clear perforated pipework of blockages.	As required.
Intermittent	CCTV survey of sewer lines to identify any defects/sign of	Every 2 – 5 years.
Maintenance	performance degradation such as:	
	Cracked/deteriorating pipes;	
	Leaking joints/seals at manholes;	
	High water line showing regular high stage in pipes (sign of	
	lack of capacity or downstream constraint); and	
	Suspected infiltration or exfiltration.	
Remedial Actions	Repair defects using suitable methods. Effective temporary	As required
	repairs may be sufficient in short term until scheduled, capital	
	improvements can be made.	
Monitoring	Record areas of surface ponding/intake bypassing/	As required
	surcharging (photos, inundated areas, depths) during extreme	
	storm events and investigate the reasoning for this post-	
	storm.	

Table 7-4 - Typical Pipe System Operation and Maintenance Requirements

7.5 Cellular Storage

A recommend operation and maintenance plan for the piped drainage network is summarised in Table 7-5.

Maintenance Schedule	Required Action	Minimum Frequency
Regular maintenance	Inspect and identify any areas that are not operating correctly.	Monthly for the initial
		three months,
		thereafter on an
		annual basis.
Occasional	Regular inspection of silt traps, manholes, pipework and pre-	As required.
Maintenance	treatment devices, with removal of sediment and debris.	

Table 7-5 - Typical Cellular Operation and Maintenance Requirements

7.6 Hydrobrake

Hydro International Hydro-Brake Flow Controls are certified to BBA and the certification includes:

- factors relating to compliance with Building Regulations where applicable;
- factors relating to additional non-regulatory information where applicable;
- independently verified technical specification;
- assessment criteria and technical investigations;
- design considerations;
- installation guidance;
- regular surveillance of production;
- formal three-yearly review.

The products are designed to be installed by a competent contractor, experienced with these types of products.

The units are manufactured from stainless steel of a sufficient strength and thickness to ensure that the products remain fit for purpose throughout their design life.

Under normal operation, the units will deflect by no more than the thickness of the material used for manufacture. This ensures that the volume of the unit available for water flow is not compromised during operation and therefore the hydraulic operation of the unit is not adversely affected by deformation of the unit.

Maintenance of Hydrobrake

Access should be provided for clearing debris from the chamber housing the flow control. In the event that the inlet to the unit becomes blocked, the pivoting bypass door may be operated by pulling the wire rope attached upwards to drain down the chamber and provide access for maintenance. The pivoting bypass door must be returned to the closed position following drain down of the chamber and clearance of the blockage.

Regular inspections should be carried out to ensure that debris that may obstruct the inlet to the flow control is not present in the chamber. The frequency of inspection must be at least once per year and always after high intensity storms and leaf fall.

The unit can be jetted from downstream, in accordance with standard sewer jetting procedures without affecting the hydraulic performance of the system.

Design life of Hydrobrake

The units are made from materials that will not be adversely affected by contaminants likely to be found in normal surface water systems in the UK. In the opinion of the BBA, the units will have a design life in excess of 60 years when installed in surface water systems. At the end of its life the unit is readily recyclable.

8. Conclusions

Intrado Consulting Engineers has been appointed to develop a Flood Risk Assessment and Drainage Strategy to manage surface water runoff resulting from the proposed planning application for the care home at Burston Garden Centre, St Albans.

The potential sources of flood risk at the site have been confirmed with the conclusion that the flood risk to the site was predominantly very low and warrant no further consideration or specific mitigation measures to be applied.

Technical information provided in this report on behalf of the Applicant seeks to demonstrate that a robust and sustainable drainage strategy has been prepared for the site, including residual events. It is proposed that the surface water runoff arising from the development discharges to the existing open ditch at the south of the site at an attenuated rate of 10 l/s to current best practice and sustainable water management guidelines through the use of SuDS. A recommended maintenance plan has been outlined.

The surface water drainage strategy presented in this report demonstrates that adequate SuDS space provision is afforded within the development and that the proposed scheme is feasible and compliant to appropriate best practice and regulatory requirements and can be maintained in accordance with best practise. It is considered that the proposals ensure the safe management and maintenance of surface water runoff.

9. Appendix A

INTRA	ADO									Pa	ge 1	
Castl	le Hous	е										
63-69	9 Cardi	ff Roa	ad									
CF15	7RD	2020	1 / . / ?			onime -				M	icro	
Date	UZ/12/	ZUZU	14:43 DV 21	10 20		booked b	у СІаі	ce		Dr	ainac	6
rite VD c	olution	NEIWO	rr 21	10 20.		necked by	20 1				J	
AP SC	51401011	5			IN	etwork 20	20.1					_
		STOP	RM SE	WER DES	IGN by	the Mod	fied 1	Rational	Metho	od		
				Des	sign C	riteria f	or Sto	rm				
			P	ipe Size	s STAND	ARD Manhol	e Sizes	STANDARD				
				FSR Rai	nfall M	Iodel - Eng	land and	d Wales				
		Ret	urn Pe	eriod (ye	ears)	1	٦dd	Flour / Cli	mata C	PIMP (%) 10	0
				MJ-00 Rat	io R	0.421	Mi	nimum Back	drop H	Height (m) 0.20	0
		Maximu	m Rair	nfall (mm	ı/hr)	75	Ma	ximum Back	drop H	leight (m) 1.50	0
Maxi	mum Time	e of Co Fo	ncentr	ation (m	lins)	30 Min E	esign D n Vol f	epth for C	ptimis	sation (m) 1.20	0
		ro Volume	tric F	aye (1/S Runoff Co	off.	0.000 Mi 0.750	n ver f Min Slo	pe for Opt	imisat	ion (1:	x) 50	0
							-	_ ±			-	
				De	esigned	with Level	Soffit	S				
				Netwo	rk Deg	sian Table	for	Storm				
рN	Length	Fall	Slope	I.Area		Base	k	n HVI	גדת ו	Sectio	n Type	Aut
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SEC	T (mm)	500010	I	Desi
1.000	156.000	0.312	500.0	0.148	5.00	0.0	0.600	\	/ 38	Pipe/C	onduit	8
1.001	50.000	0.100	500.0	0.041	0.00	0.0	0.600	\	/ 38	Pipe/C	onduit	- 🖣
1.002	49.500	0.248	200.0	0.040	0.00	0.0	0.600		o <u>300</u>	Pipe/C	onduit	ď
2.000	19.200	0.096	200.0	0.113	5.00	0.0	0.600		o 225	Pipe/C	onduit	8
1.003	38.200	0.076	502.6	0.000	0.00	0.0	0.600		o 300	Pipe/C	onduit	- 🖑
1.004	38.200	0.076	502.6	5 0.049	0.00	0.0	0.600	\	/ 38	Pipe/C	onduit	- <mark>d</mark>
1.005	20.000	0.040	500.0	0.000	0.00	0.0	0.600		0 300	Pipe/C	onduit	ď
3.000	100.000	0.200	500.0	0.084	5.00	0.0		0.045 \	/ 38	Pipe/C	onduit	¢
3.001	13.000	0.065	200.0	0.000	0.00	0.0	0.600		o <u>300</u>	Pipe/C	onduit	đ
3.002	39.000	0.193	200.0	0.071	0.00	0.0	0.000		5 300	гтре/С	UIIUUIL	
				<u>1</u>	Networ	k Results	Table	2				
	PN Ra	ain	T.C.	US/IL S	I.Area	a ΣBase	Foul	Add Flow	Vel	Cap	Flow	
	(mm	/hr) (mins)	(m)	(ha)	Flow (l/s) (l/s)	(l/s)	(m/s)	(l/s)	(1/s)	
1.	.000 5	0.34	6.31	85.500	0.148	з о.	0 0.0	0.0	1.98	3035.3	20.2	
1	.001 4	8.76	6.74	85.188	0.18	9 0.	0 0.0	0.0	1.98	3035.3	25.0	
1	.002 4	6.22	7.48	85.088	0.229	9 0.	0 0.0	0.0	1.11	78.3	28.7	
2	.000 5	4.46	5.35	84.950	0.113	з о.	0 0.0	0.0	0.92	36.6	16.7	
1	.003 4	3.47	8.40	84.779	0.341	2 0	0 0 0) 0 0	0.69	491	40.3	
1	.004 4	2.63	8.72	84.403	0.391	1 0.	0 0.0	0.0	1.97	3027.3	45.1	
1	.005 4	1.47	9.20	84.327	0.393	1 0.	0 0.0	0.0	0.70	49.2	45.1	
З	000 4	4 30	Q 11	85 010	0 00	1 0	0 0 0		0 54	823 1	10 1	
3	.001 4	3.74	8.30	84.810	0.084	4 0.	0 0.0	0.0	1.11	78.3	10.1	
3	.002 4	2.21	8.89	84.745	0.15	5 0.	0 0.0	0.0	1.11	78.3	17.7	
					©1982	-2020 Inn	ovyze					

INTRA	DO											Pag	e 2
Castl	e Hous	se											
63-69	Cardi	ff Ro	ad										-
CF15	7RD											Mi	
Date	02/12/	2020	14:43		1	Desig	ned by	/ Clar	re			Dra	ninano
File	STORM	NETWO	RK 21	10 20	.MDX	Check	ed by					DIC	mage
XP So	lutior	ıs]	Netwo	rk 202	20.1					
				Netwo	ork De	sign	Table	for S	Storm				
PN	Length (m)	n Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ase (1/s)	k (mm)	n HYD SECT	DIA (mm)	Sec	tion Type	e Auto Design
3.003	85.500	0.155	551.6	0.231	0.00)	0.0	0.600	\/	38	Pip	e/Condui	t 🥚
3.004	10.000	0.020	500.0	0.000	0.00)	0.0	0.600	0	300	Pip	e/Condui	t 🗗
4.000	39.650	0.198	200.3	0.058	5.00)	0.0	0.600	00	100	Do:	uble Pip	e 🖷
4.001	28.000	0.140	200.0	0.000	0.00)	0.0	0.600	00	150	Do	uble Pip	e 🗗
4.002	30.000	0.150	200.0	0.000	0.00)	0.0	0.600	00	150	Do	uble Pip	e 🗗
4.003	12.100	0.061	200.0	0.107	0.00)	0.0	0.600	0	300	Pip	e/Condui e/Condui	t 🗗
4.004	36.000) 0.000) 0.180	200.0	0.000	0.00)	0.0	0.600	0	375	, rip Pip	e/Condui	- 🖸 t 🗗
5.000	10.000	0.050	200.0	0.000	5.00)	0.0	0.600	0	225	Pip	e/Condui	t 👌
3.005	10.000	0.067	149.3	0.000	0.00)	0.0	0.600	0	450	Pip	e/Condui:	- #
3.000	10.000		110.0	0.000	0.00	,	0.0	0.000	0	100	ттр	e, condui	
Network Results Table													
I	PN R	ain	T.C.	US/IL	Σ I.Are	ea Σ	Base	Foul	Add F	low	Vel	Cap	Flow
	(mr	n/hr) (mins)	(m)	(ha)	Flow	/ (1/s)	(1/s)	(1/s	;) (m/s)	(1/s)	(l/s)
3.	003 4	10.44	9.65	84.300	0.38	36	0.0	0.0)	0.0	1.88	2888.9	42.3
3.	004 3	39.91	9.89	84.145	0.38	36	0.0	0.0)	0.0	0.70	49.2	42.3
4 .	000	50.70	6.22	85.300	0.05	58	0.0	0.0)	0.0	0.54	8.5	8.0
4.	001 4	18.23	6.88	85.052	0.05	58	0.0	0.0)	0.0	0.71	25.0	8.0
4.	002 4	15.87	7.59	84.912	0.05	58	0.0	0.0)	0.0	0.71	25.0	8.0
4.	003 4	15.30	7.77	84.612	0.16	55	0.0	0.0)	0.0	1.11	78.3	20.2
4.	004 4	14.78	7.95	84.552	0.34	13	0.0	0.0)	0.0	1.28	141.1	41.6
4.	005 4	13.42	8.42	84.486	0.34	13	0.0	0.0)	0.0	1.28	141.1	41.6
5.	000	55.25	5.18	84.300	0.00	00	0.0	0.0)	0.0	0.92	36.6	0.0
3.	005 3	39.70	9.99	83.975	0.72	29	0.0	0.0)	0.0	1.66	264.3	78.4
			Fre	ee Flov	ving O	utfal	l Deta	ails :	for St	orm			
		()11+ f=1	ا - 011 ا	all C	Leval	T Les	vel	Min	л.	ស		
		Pip	oe Numb	ber Na	me	(m)	(m)	I.	Level (m)	(mm)	(mm)		
			1.0	005		85.650	84.2	287	0.000	0	0		
			Fr	ee Flov	ving O	utfal	l Deta	ails :	for St	orm			
		(Pi _l	Outfall De Numb	L Outf Der Nam	all C. me	Level (m)	I. Lev (m)	vel I.	Min Level (m)	D,L (mm)	W (mm)		
			3.0	005		85.000	83.9	908	0.000	0	0		
					©1982	2-2020) Inno	vyze					

INTRADO		Page 3
Castle House		
63-69 Cardiff Road		
CF15 7RD		Micro
Date 02/12/2020 14:43	Designed by Clare	Drainage
File SIORM NEIWORK 21 10 20.MDX	Network 2020 1	
	Network 2020.1	
Simulatio	on Criteria for Storm	
Volumetric Runoff Coeff Areal Reduction Factor 7 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s)	0.750 Additional Flow - % of Total Fl 1.000 MADD Factor * 10m ³ /ha Stora 0 Inlet Coefficcie 0 Flow per Person per Day (1/per/da 0.500 Run Time (min 0.000 Output Interval (min	ow 0.000 ge 2.000 nt 0.800 y) 0.000 s) 60 s) 1
Number of Input Hydrogr Number of Online Cont Number of Offline Cont	aphs 0 Number of Storage Structures 8 rols 5 Number of Time/Area Diagrams 0 rols 0 Number of Real Time Controls 0	
Synthet	ic Rainfall Details	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	FSR Profile Type Sum 1 Cv (Summer) 0. nd and Wales Cv (Winter) 0. 20.000 Storm Duration (mins) 0.421	mer 750 840 30

INTRADO						Pa	age 4
Castle House						Г	
63-69 Cardiff Ro	oad						
CF15 7RD						N	licco
Date 02/12/2020	14:43		Designe	d by Cla	re		
File STORM NETW	ORK 21	10 20.MDX	Checked	lbv			llainage
XP Solutions	-		Network	2020.1			
		Online	e Control	s for Sto	orm		
Uudro Drol	ro@ Ont	imum Manh		ос/рм. 1	005 Volur	$mo(m^3)$: 0 C
<u>nyuro-bra</u>	tee opt	LINUM Maini	ore: J, 1	JS/PN: 1.	003, VOIU		00.0
		Uni	t Referenc	e MD-SHE-0	086-3400-11	00-3400	
		Desi	gn Head (m	ı)		1.100	
		Design	Flow (1/s	.) TM	Cal	3.4	
			Objectiv	re Minimis	e upstream	storage	
			Applicatio	n	apoer cam	Surface	
		Sum	p Availabl	e		Yes	
		Di	ameter (mm	1)		86	
		Inver	t Level (m	l)		84.327	
Min	ımum Out	let Pipe Di Manhole Di	ameter (mm	L)		1200	
5	uggestet	i Mannore Dr	ameter (mi	.)		1200	
		Control P	oints	Head (m)	Flow (l/s)		
	Des	ign Point (C	Calculated)	1.100	3.4		
			Flush-Flo ^T	™ 0.326	3.4		
	Maa		Kick-Flo	B 0.679	2.7		
	Mea	II FIOW OVEL	neau Kange	-	5.0		
The hydrological Hydro-Brake® Opt Hydro-Brake Opti invalidated	calcula imum as mum® be	ations have specified. utilised th	been based Should an en these s	l on the He other type storage rou	ad/Discharg of control ting calcul	e relations device oth ations will	hip for the er than a be
Depth (m) Flow	(1/s) De	epth (m) Flo	ow (1/s) D	epth (m) F	low (l/s) D	epth (m) Fl	ow (1/s)
0.100	2.6	1,200	3.5	3.000	5.4	7.000	8.1
0.200	3.3	1.400	3.8	3.500	5.8	7.500	8.3
0.300	3.4	1.600	4.0	4.000	6.2	8.000	8.6
0.400	3.4	1.800	4.3	4.500	6.6	8.500	8.9
0.500	3.3	2.000	4.5	5.000	6.9	9.000	9.1
0.800	2 9	2.200	4.7	5.500	7.2	9.500	9.5
1.000	3.3	2.600	5.1	6.500	7.8		
	- ·			0.01		150 5	
Orli	tice Ma	nhole: /,	DS/PN: 3	3.001, Vo	lume (m³)	: 153.5	
Diameter	(m) 0.0)21 Discharg	e Coeffici	ent 0.600	Invert Leve	l (m) 84.81	0
Orif	ice Ma	nhole: 10,	DS/PN:	3.004, Vo	olume (m³)	: 183.0	
				,	<u> </u>		
Diameter	(m) 0.0)53 Discharg	e Coeffici	ent 0.600	Invert Leve	l (m) 84.14	5
Ori	fice M	anhole: 10	, DS/PN:	4.001, \	Volume (m³): 1.2	
1							
Diameter	(m) 0.C)59 Discharg	e Coeffici	ent 0.600	Invert Leve	l (m) 85.05	2
Diameter	(m) 0.C)59 Discharg	e Coeffici	ent 0.600	Invert Leve	l (m) 85.05	2
Diameter	(m) 0.C)59 Discharg	e Coeffici	ent 0.600	Invert Leve	l (m) 85.05	2

INTRADO													Page	e 5
Castle Hou	ıse													
63-69 Card	diff R	oad												-
CF15 7RD													Mir	
Date 02/12	2/2020	14:4	3			Desig	ned b	y Cl	lare					
File STORM	M NETW	ORK 2	1 10 2	20.M	DX	Check	ed by						DIC	may
XP Solutio	ons					Netwo	rk 20	20.1	L					
Hydr	ro-Bra	ke® O	ptimun	n Ma	nhol	e: 14	, DS/	PN:	3.00	5, Vc	lume	(m ³): 6.	2
				T	Init	Refere	nce MD	-SHE	-0120-	-6600-	1000-6	600		
	Design Head (m) 1.000													
				Desi	ign F	low (l	/s)					6.6		
					F	lush-F	lo™ iwo M	linim		C	alcula [.]	ted		
					Ap	plicat	ion	1 1 1 1 1 1 1 1	use uj	pstrea	Surf	age ace		
				2	Sump	Availa	ble					Yes		
				-	Diam	eter (mm)				0.0	120		
	Min	imum ()11+10+	In Pipe	Jert Diam	Level	(m) mm)				83.	9/5 150		
	MTU S	uggest	ed Man	⊥ ⊥pe hole	Diam	eter (mm)				1	200		
			Co	ntrol	L Poi	nts	Hea	ad (n	n) Flo	ow (1/s	;)			
		ח	esian P	oint	(Ca	loulate	(be	1 00	חר	6	6			
		D	esign i	OTHC	FI	lush-Fl	Lo™	0.29	99	6.	6			
					F	Kick-Fi	Lo®	0.65	52	5.	4			
		М	ean Flo	vo w	er He	ead Rar	nge		-	5.	7			
The hydro Hydro-Bra Hydro-Bra invalidat	logical ke® Opt ke Opti ed	. calcı .imum a .mum® }	ulation as spec be util	s hav ified ised	ve be d. S then	en bas hould these	ed on anothe stora	the er ty ige r	Head/l pe of outing	Discha contr g calc	rge re ol dev ulation	latio ice o ns wi	onship other ill be	for th than a
Depth (m)) Flow	(1/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(1/s)
0.10	0	4.3	1.	200		7.2	3	.000		11.1	7	.000		16.6
0.20	0	6.4	1.	400		7.7	3	.500		11.9	7	.500		17.1
0.300	0	6.6	1.	600		8.2	4	.000		12.7	8	.000		17.7
0.400	0	6.3	2.	000		8.7 9.1	4 5	.000		14.1	9	.000		18.7
0.600	0	5.9	2.	200		9.6	5	.500		14.8	9	.500		19.2
0.80	0	5.9	2.	400		10.0	6	.000		15.4				
1.000	0	6.6	2.	600		10.3	6	.500		16.0				

INTRADO		Page 6
Castle House		
63-69 Cardiff Road		
CF15 7RD		Micco
Date 02/12/2020 14:43 Des	signed by Clare	
File STORM NETWORK 21 10 20.MDX Che	ecked by	Dialitage
XP Solutions Net	work 2020.1	
<u>Storage Stru</u> <u>Porous Car Park Ma</u>	uctures for Storm anhole: 1, DS/PN: 1.000	
Infiltration Coefficient Base (m/h Membrane Percolation (mm/h Max Percolation (l/ Safety Fact Porosi Invert Level (s	r) 0.00000 Width (m) r) 1000 Length (m) s) 411.3 Slope (1:X) or 2.0 Depression Storage (mm) ty 0.30 Evaporation (mm/day) m) 84.690 Cap Volume Depth (m)	10.5 141.0 500.0 5 3 0.350
Tank or Pond Man	hole: 2, DS/PN: 1.001	
Invert Le	evel (m) 85.188	
Depth (m) Area (m	m ²) Depth (m) Area (m ²)	
0.000 210	0.0 0.700 210.0	
Porous Car Park Ma	anhole: 3, DS/PN: 2.000	
Infiltration Coefficient Base (m/h Membrane Percolation (mm/h Max Percolation (l/ Safety Fact Porosi Invert Level (s	r) 0.00000 Width (m) r) 1000 Length (m) s) 411.3 Slope (1:X) or 2.0 Depression Storage (mm) ty 0.30 Evaporation (mm/day) m) 84.690 Cap Volume Depth (m)	10.5 141.0 500.0 5 3 0.350
Porous Car Park Ma	anhole: 9, DS/PN: 3.003	
Infiltration Coefficient Base (m/h Membrane Percolation (mm/h Max Percolation (l/ Safety Fact Porosi Invert Level (s	r) 0.00000 Width (m) r) 1000 Length (m) s) 55.6 Slope (1:X) or 2.0 Depression Storage (mm) ty 0.30 Evaporation (mm/day) m) 84.175 Membrane Depth (mm)	10.0 20.0 500.0 5 3 0
Tank or Pond Man	hole: 10, DS/PN: 4.000	
Invert Le	evel (m) 85.300	
Depth (m) Area (m	n ²) Depth (m) Area (m ²)	
0.000 170	0.0 0.300 263.0	
Tank or Pond Man	hole: 12, DS/PN: 4.004	
Invert Le	evel (m) 84.715	

INTRADO		Page 7
Castle House		
63-69 Cardiff Road		
Date $02/12/2020$ 14.43	Designed by Clare	Micro
File STORM NETWORK 21 10 20.MDX	Checked by	Drainage
XP Solutions	Network 2020.1	
Tank or Pond	Manhole: 12, DS/PN: 4.004	
Depth (m) Ar	rea (m²) Depth (m) Area (m²)	
0.000	52.5 0.800 52.5	
Tank or Pond	Manhole: 13, DS/PN: 4.005	
Inve	ert Level (m) 84.574	
Donth (=) A-	(m^2) Depth (m) area (m^2)	
0.000	34.0 0.900 34.0	
<u>Cellular Stora</u>	ge Manhole: 16, DS/PN: 5.000	
-		0
Inve Infiltration Coefficient	ert Level (m) 84.450 Safety Factor 2 Base (m/hr) 0.00000 Porosity 0.	.0 95
Infiltration Coefficient	Side (m/hr) 0.00000	
Depth (m) Area (m ²) Inf. An	rea (m²) Depth (m) Area (m²) Inf. Area	(m²)
0 000 92 0	92 0 0 600 0 0	119 0
0.500 92.0	119.0	119.0
©19	82-2020 Innovyze	

INTRA	DO								Page	8
Castle	e Hou	se								
63-69	Card	iff Road								
CF15 '	7rd								Mic	
Date	02/12	/2020 14:4	3	Ι	Designe	ed by	Clare			
File :	STORM	NETWORK 2	1 10 20	.MDX (Checke	d by			Didi	nage
XP So	lutio	ns		1	Networl	c 2020	.1			
<u>1 ye</u>	ar Re	turn Peric	d Summ	ary of	Critic	al Rea	sults by	Maximum (Dutflow	(Rank
				1) for	Storm				
				Cim	lation	Critori	2			
		Areal Red	uction F	$\frac{5100}{1}$.000 A	dditior	<u>a</u> nal Flow -	% of Total	Flow 0.0	00
		Hot	Start (mins)	0	MADI) Factor *	10m³/ha St	orage 2.0	00
		Hot Sta	rt Level	(mm)	0		Inl	et Coeffie	cient 0.8	00
M	Ianhole Foul	e Headloss Co	beff (Gl	obal) 0. (1/c) 0	500 Flc	w per B	Person per	Day (l/per	/day) 0.0	00
	rour	Sewage per i	lectare	(1/5) 0.	000					
		Number of	Input H	lydrograp	phs 0 N	umber o	f Storage	Structures	8	
		Number	of Onlir	ne Contro	ols 5 N	umber o	f Time/Are	a Diagrams	0	
		Number c	I OIIIII	ie Contro	DIS U N	umper o	I Real lim	e Controls	0	
				Synthet	ic Rain:	fall De	tails			
		Rain	fall Moc	lel		FSR	Ratio	R 0.421		
			Regi	on Engla	and and	Wales	Cv (Summer) 0.750		
			MJ-00 (II		4	20.000	CV (WINCEL) 0.040		
		Margin for F	lood Ris	sk Warnin	ng (mm)			1	L00.0	
			Ana	alysis T	imestep	2.5 Se	cond Incre	ment (Exter	nded)	
				DTS	Status				OFF	
				Inertia	Status				ON	
			Profile	(5)				Summer and	Winter	
		Duration	n(s) (min	ns) :	15, 30,	60, 12	0, 180, 24	D, 360, 480	, 600,	
					720,	960, 14	40, 2160, 2	2880, 4320,	5760,	
	Po	turn Poriod		ral				7200, 8640,	10080	
	Ne	Climate	Change	(응)				±, ~ 0,	0, 40	
			2							
										Wator
	US/MH		Return	Climate	Firs	t (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surc	narge	Flood	Overflow	Act.	(m)
1 000	1	9610 Winter	1							01 011
1.001	⊥ 2	30 Winter	⊥ 1	+U등 +0%						04.944 85.197
1.002	3	60 Winter	1	+0%						85.126
2.000	3	8640 Summer	1	+0%						84.888
1.003	4	60 Winter	1	+0%						84.826
1.004	4	15 Winter	1	+0% +0%	30/15	Summor				84.477
3.000	6	15 Winter	1	+0%	50715	Summer				85.113
3.001	7	240 Winter	1	+0%	30/60	Summer				85.034
3.002	8	15 Winter	1	+0%						84.814
3.003	9	60 Winter	1	+0%	20/20	C11mm				84.342
4.000	10 10	120 Winter 120 Winter	⊥ 1	+U% +N%	30/30 100/60	Summer Winter				04.353 85.326
4.001	10	120 Winter	1	+0%	30/15	Winter				85.120
4.002	10	120 Winter	1	+0%	100/15	Winter				84.934
4.003	11	15 Winter	1	+0%	100/15	Summer				84.720
4.004	12	15 Winter	Ţ	+0%	100/15	Summer				84.69/
				©1982	2-2020	Innov	yze			

INT	RADO									Page 9
Cas	tle Ho	ouse								
63-	69 Car	diff	Road							
CF1	5 7RD									Mirro
Dat	e 02/1	2/202	0 14:43		Des	igned by	Clare			Dcainago
Fil	e STOF	RM NET	WORK 21 1	0 20.MD	X Cheo	cked by				Diamage
XP	Soluti	ons			Netw	vork 202	0.1			
1	year l	Returr	n Period S	ummary	of Cri	tical Re	esults by	Maxim	um Out	flow (Rank
					<u>1) I</u>	or Storm	<u>1</u>			
		11C /MI	Surcharged	Flooded	F lav. /	0	Half Drain	Pipe		T ana 1
	PN	Name	(m)	(m ³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
			()	, ,		(_/ _/	()	(_/ -/		
	1.000	1	-1.350	0.000	0.00			0.0	OK	
	1.001	23	-0.785	0.000	0.00			1.8	OK	
	2.000	3	-0.287	0.000	0.04			0.0	OK*	
	1.003	4	-0.253	0.000	0.06			2.9	OK*	
	1.004	4	-0.720	0.000	0.00			6.3	OK	
	1.005	5	-0.119	0.000	0.07			3.2	OK*	
	3.000	6 7	-0.691	0.000	0.01			0 4	OK *	
	3.002	8	-0.231	0.000	0.12			8.7	OK	
	3.003	9	-0.752	0.000	0.00			9.4	OK	
	3.004	10	-0.092	0.000	0.08			2.5	OK	
	4.000	10	-0.074	0.000	0.15			1.2	OK	
	4.001	10	-0.082	0.000	0.05			1.2	OK	
	4.003	11	-0.192	0.000	0.21			12.8	OK	
	4.004	12	-0.229	0.000	0.32			34.1	OK	
				A 1	000 00					
1				CI	20Z-ZU	ZU INNO	vyze			

INTRADO		Page 10
Castle House		
63-69 Cardiff Road		
CF15 7RD		Micro
Date 02/12/2020 14:43	Designed by Clare	
File STORM NETWORK 21 10 20.MDX	Checked by	Dialitada
XP Solutions	Network 2020.1	

PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
4.005	13	15 Winter	1	+0%	100/15 Summer				84.619
5.000	16	15 Summer	1	+0%	1/15 Winter				84.518
3.005	14	480 Summer	1	+0%	1/15 Summer				84.401

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
4.005	13	-0.241	0.000	0.23			29.5	OK	
5.000	16	-0.007	0.000	0.25		10	7.8	OK	
3.005	14	-0.024	0.000	0.04			6.6	OK	

INTRA	DO								Page	11
Castl	e Hou	se								
63-69	Card	iff Road								
CF15	7rd								Mic	
Date	02/12	/2020 14:4	3	I	Designe	ed by	Clare			
File	STORM	NETWORK 2	1 10 20	O.MDX (Checked	d by			DIG	nage
XP So	lutio	ns		1	Networl	c 2020	.1		l.	
<u>30 ye</u>	ear Re	eturn Perio	od Sumn	nary of	Criti	cal Re	sults by	Maximum	Outflow	(Rank
				<u>1</u>) for	Storm				
				Simu	lation	Criteri	a			
		Areal Redu	action F	actor 1.	000 A	dditior	nal Flow -	% of Total	Flow 0.0	00
		Hot Star	Start (mins)	0	MADI) Factor *	10m ³ /ha St	orage 2.0	00
Μ	lanhole	Headloss Co	oeff (Gl	obal) 0.	500 Flc	w per I	erson per	Day (l/per	/day) 0.0	00
	Foul	Sewage per h	nectare	(l/s) 0.	000	-	-	1 1 1	-	
		North and a f	Tarat	T			6 . O.h	0 +	0	
		Number of Number	of Onlir	iyarogra ne Contro	pns U Ni ols 5 Ni	umber o umber o	f Time/Are	a Diagrams	8 0	
		Number o	f Offlir	ne Contro	ols 0 Ni	umber o	f Real Tim	e Controls	0	
		Rain	fall Mor	Synthet	ic Rain:	FSR	<u>tails</u> Batio i	R 0 421		
		Ratii	Regi	ion Engl	and and	Wales	Cv (Summer) 0.750		
			M5-60 (n	nm)	2	20.000	Cv (Winter) 0.840		
		Margin for F	lood Big	sk Warni	ng (mm)			1		
		nargin ioi i	Ana	alysis T	imestep	2.5 Se	cond Incre	nent (Exter	nded)	
				DTS	Status				OFF	
				DVD	Status				ON	
				INCLUA	Status				ON	
				<i>,</i> ,						
		Duration	Profile	(S) ns)	15. 30.	60. 12	0. 180. 240	Summer and	Winter	
			(-) (,	720, 9	960, 14	40, 2160, 2	2880, 4320,	5760,	
	_							7200, 8640,	10080	
	Re	turn Period(Climate	s) (yea: Change	rs) (%)				1, 3 0.	0, 100	
		011111000	onungo	(0)				•,	0, 10	
	US/MH		Return	Climate	First	- (X)	First (Y)	First (7)	Overflow	Water
PN	Name	Storm	Period	Change	Surch	harge	Flood	Overflow	Act.	(m)
1 000		1440 571 -		-		-				04 000
1.000	1	30 Winter	30 30	+U% +N%						84.988 85.211
1.002	3	30 Winter	30	+0%						85.156
2.000	3	8640 Winter	30	+0%						84.956
1.003	4	30 Winter	30	+0%						84.864
1.004	45	480 Summer	30	+0%	30/15	Summer				84.667
3.000	6	15 Winter	30	+0%	, =0					85.173
3.001	7	240 Winter	30	+0%	30/60	Summer				85.165
3.002	8 9	15 Winter 30 Winter	30 30	+0% +0%						84.870 84.477
3.004	10	480 Winter	30	+0%	30/30	Summer				84.641
4.000	10	60 Winter	30	+0%	100/60	Winter				85.351
4.001	10	60 Winter	30	+0%	30/15	Winter				85.317
4.002	11	15 Summer	30	+0%	100/15	Summer				84.842
4.004	12	15 Winter	30	+0%	100/15	Summer				84.814
				©1982	2-2020	Innov	yze			

INTRADO)								Page 12
Castle	House							1	
63-69 C	'ardif	f Road							
CE15 75		I Road							
Data 02		020 14.42			o o i ano d	br Clana			ΜΙϹΓΟ
Date 02	$/ \perp Z / Z$	020 14:43	10 00			by clare			Drainage
File SI	ORM N	EIWORK ZI	10 20.	MDX C.	пескеа р	<u>Y</u>			
XP Solu	itions			N	etwork 2	020.1			
20 1100	r Dot	urn Dorior	d Cummo	ru of	Critical	Dogulta	orr Mo	vimum Outf	lou (Donk
<u> 30 yea</u>	I Ket	ulli rello(1)	for Sto	rm	оу ма.		IOW (Rallk
		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1 000	1	1 206	0 000	0 00			0 0	01	7
1 001	2	-1.306	0.000	0.00			4 1	OF OF	<
1.001	3	-0.232	0.000	0.12			8.7	OF	ζ
2.000	3	-0.219	0.000	0.01			0.2	OK?	k
1.003	4	-0.215	0.000	0.18			8.7	OK?	k
1.004	4	-0.530	0.000	0.01			18.8	OF	K
1.005	5	-0.002	0.000	0.08			3.4	OK'	*
3.000	6 7	-0.631	0.000	0.03			25.3	CUDCUADCED	ξ. κ
3.002	8	-0.175	0.000	0.01			26.2	OF	<
3.003	9	-0.617	0.000	0.02		320	54.0	OF	K
3.004	10	0.196	0.000	0.13			4.0	SURCHARGEI)
4.000	10	-0.049	0.000	0.52			4.3	OF	K
4.001	10	0.115	0.000	0.15			3.5	SURCHARGEI)
4.002	10	-0.112	0.000	0.15			3.5	OF	ζ.
4.003	12	-0.070	0.000	0.60			36.8	0 P	<
1.001	12	0.110	0.000	0.02			00.1	01	

INTRADO		Page 13
Castle House		
63-69 Cardiff Road		
CF15 7RD		Micro
Date 02/12/2020 14:43	Designed by Clare	Desinado
File STORM NETWORK 21 10 20.MDX	Checked by	Diamage
XP Solutions	Network 2020.1	•

30 year Return Period Summary of Critical Results by Maximum Outflow (Rank 1) for Storm

PN	US/MH Name	St	torm	Return Period	Climate Change	First Surcl	t (X) narge	First Floc	(Y) d	First Overf	(Z) low	Overflow Act.	Water Level (m)
4.005	13	15	Summer	30	+0%	100/15	Summer						84.756
5.000	16	15	Summer	30	+0%	1/15	Winter						84.683
3.005	14	1440	Winter	30	+0%	1/15	Summer						84.286

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
4.005	13	-0.104	0.000	0.52			65.6	OK	
5.000	16	0.158	0.000	0.22		43	6.6	SURCHARGED	
3.005	14	-0.139	0.000	0.04			6.6	OK	

INTRA	ADO								Page	14
Castl	e Hou	se								
63-69) Card	liff Road								
CF15	7rd								Micc	
Date	02/12	/2020 14:43	3	D	esigne	d by (Clare			
File	STORM	I NETWORK 21	10 20	.MDX C	hecked	by			Didi	lage
XP Sc	olutic	ns		N	letwork	2020.	.1		I	
<u>100 y</u>	year H	Return Peri	od Sumr	nary of	Critic	cal Re	sults by	Maximum	Outflow	(Rank
				1)	for S	torm				
				Simu	lation C	ritori	a			
		Areal Redu	ction Fa	actor 1.0	000 Ad	dition	al Flow -	% of Total	Flow 0.00	0
		Hot	Start (n	nins)	0	MADD	Factor *	10m³/ha Sto	orage 2.00	0
		Hot Star	t Level	(mm)	0		Inl	et Coeffied	cient 0.80	00
	Foul	e Headloss Co Sewage per h	eII (GLC ectare)	(1/s) 0.3	200 Flow 000	per P	erson per	Day (1/per/	'day) 0.00	10
	rour	bewage per n	cecure	(1/3) 0.0	000					
		Number of	Input H	ydrograp	hs 0 Nur	nber of	Storage S	Structures	8	
		Number of	of Onlin	e Contro	ls 5 Nur	nber of	E Time/Area	Diagrams	0	
		Number 01	. UIIIII	e concro	15 0 1101	iber or	. Keai iime	CONCLOIS	0	
				Syntheti	.c Rainfa	all Det	ails			
		Rainf	all Mod	el		FSR	Ratio F	0.421		
		Ν	Regi 15-60 (m	on Engla m)	ind and V 20	Nales () 000 c	V (Summer) V (Winter)	0.750		
		-	10 00 (10	,			(0.010		
		Margin for F	lood Ris	k Warnin	ıg (mm)			1	00.0	
			Ana	lysis Ti	mestep 2	2.5 Sec	cond Increm	ent (Exten	ded)	
				DIS	Status				OFF	
				Inertia	Status				ON	
		1	Profile(s)			S	ummer and	Winter	
		Duration	(s) (min	is) 1	5, 30, 6	50, 120	, 180, 240	, 360, 480	, 600,	
					720, 96	50, 144	0, 2160, 2	880, 4320,	5760 ,	
	D	turn Poriod(c) (1100r	(a)			7	200, 8640,	10080	
	L/t	Climate (S) (year Change (· 5 / (응)				±, 3 0,	0, 100	
	119 /MU		Peturn	Climate	First	(¥)	First (V)	First (7)	Overflow	Water
PN	Name	Storm	Period	Change	Surch	arge	Flood	Overflow	Act.	(m)
			-	2.		-				
1.000	1	10080 Winter	100	+40% ±40%						85.501
1.001	2	30 Winter	100	+40%						85.188
2.000	3	960 Winter	100	+40%						84.981
1.003	4	30 Winter	100	+40%						84.957
1.004	4	15 Winter	100	+40%	20/15	C				84.863
3.000	5 6	15 Winter	100	+40% +40%	30/15	summer				85.247
3.001	7	180 Winter	100	+40%	30/60	Summer				85.304
3.002	8	15 Winter	100	+40%						84.924
3.003	9	15 Winter	100	+40%	20/20	C				84.575
3.004	10 10	120 Winter 15 Winter	100 100	+40% +40%	30/30 100/60	Summer Winter				85.378
4.001	10	30 Winter	100	+40%	30/15	Winter				85.354
4.002	10	15 Winter	100	+40%	100/15	Winter				85.099
4.003	11	15 Winter	100	+40%	100/15	Summer				85.102
4.004	12	15 Winter	100	+40%	100/15	summer				00.026
				©1982	-2020 1	Innovy	ze			

INTRADO)]	Page 15
Castle	House							(
63-69 0	Cardif	f Road							
CF15 7F	RD								Mirro
Date 02	2/12/2	020 14:43		De	esigned	by Clare			Dcainago
File ST	ORM N	ETWORK 21	10 20.	MDX C	hecked b	У			Diamage
XP Solu	utions			N	etwork 2	020.1		ŀ	
<u>100 yea</u>	ar Ret	urn Perio	d Summa	ary of	Critica	l Results	by Ma	ximum Out	flow (Rank
				1)	for Sto	orm			
		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow	.	Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	1	-0.793	0.000	0.00			0.3	OF	ζ
1.001	2	-0.751	0.000	0.00			7.3	OF	K
1.002	3	-0.200	0.000	0.24			17.9	OF	ζ
2.000	3	-0.194	0.000	0.05			17.7	OK /	κ.
1.004	4	-0.334	0.000	0.01			35.4	OF	K
1.005	5	0.011	0.000	0.08			3.4	SURCHARGED'	k
3.000	6	-0.557	0.000	0.06			45.4	OF	K
3.001	-/	0.194	0.000	0.01			0.6	SURCHARGED'	< 7
3.002	9	-0.519	0.000	0.06		412	134.8	OF	ζ
3.004	10	0.497	0.000	0.16			4.8	FLOOD RISH	K
4.000	10	-0.022	0.000	0.72			6.0	OF	K
4.001	10	0.152	0.000	0.16			3.8	SURCHARGEI)
4.002	10	0.037	0.000	1 02			62 8	SURCHARGEI	
4.004	12	0.099	0.000	1.30			139.3	SURCHARGEI)
				©1982-	-2020 In	novyze			

INTRADO		Page 16
Castle House		
63-69 Cardiff Road		
CF15 7RD		Micro
Date 02/12/2020 14:43	Designed by Clare	Dcainago
File STORM NETWORK 21 10 20.MDX	Checked by	Diamage
XP Solutions	Network 2020.1	

 100 year Return Period Summary of Critical Results by Maximum Outflow (Rank

 1) for Storm

PN	US/MH Name	Storm	Return Period	Climate Change	First Surch	: (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
4.005	13	15 Winter	100	+40%	100/15	Summer				84.989
5.000	16	15 Summer	100	+40%	1/15	Winter				84.839
3.005	14	120 Winter	100	+40%	1/15	Summer				85.189

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
4.005	13	0.128	0.000	0.62			79.3	SURCHARGED	
5.000	16	0.314	0.000	0.16		95	5.0	SURCHARGED	
3.005	14	0.764	0.000	0.04			7.2	FLOOD RISK	

10.Appendix B

11.Appendix C

1. Site details

- 1.1 Planning reference number
- 1.2 Site name Burston Village
- 1.3 Total site area 3.55 ha
- 1.3 Site area which is positively drained 1.08 ha
- 1.4 Developed area 1.08 ha
- 1.5 Predevelopment use Greenfield / Brownfield / Mixed*
- 1.6 Site constraints High groundwater table as recorded in the site investigation.
- 1.7 Type of discharge Infiltration / watercourse / sewer / mixed

2. Flow control

- 2.1 Flow control type Hydrobrakes and Orifices within the system Fixed / Variable*
- 2.2 Greenfield flow Q1 10 l/s for the site
- 2.3 Greenfield flow Q100 10 l/s for the site

3. Site storage volume

- 3.1 Source control provided Yes/No
- 3.2 Approach used to calculate storage Fixed Flow rate 1 / 2 / PDL
- 3.3 Storage 1 in 1 year 152 m3 for the site
- 3.4 Storage 1in 30 year 460m3 for the site
- 3.5 Storage 1 in 100 year plus CC 590 m3 for the site
- 3.6 Long term storage 3 for the site
- 3.7 Total site storage 796 m3

4. Design checks

- 4.1 Time taken for 50% of storage to drain down (Note 16) within 24 hours
- 4.2 All SuDS storage located outside Q100 floodplain Yes/No
- 4.3 Provision for blockage / design exceedance (Note 18) Yes/No