

McPartland Planning Ltd.

St. Stephens Green Farm, Chiswell Green Lane, St. Albans, Hertfordshire

Minerals Resource Assessment

1922316 R01 (00)

APRIL 2022

RSK GENERAL NOTES

Project No.: 1922316 R01 (00)

Title:Minerals Resource Assessment: St. Stephens Green Farm, Chiswell Green
Lane, St. Albans, Hertfordshire

Client: McPartland Planning Ltd., 10 Orient Close, St. Albans, Hertfordshire, AL1 1AJ

Date: 22nd April 2022

Office: RSK Environment Limited, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT

Status: Rev 00

Author	Chris Duffield	Technical reviewer	Duncan Sharp
Signature	C. Dussield	Signature	R
Technical reviewer – Geology (CGeol)	Ben Winch	Quality reviewer	Carvs Baker
Signature	BHK	Signature	(AABaves)

Revision control sheet					
Revision reference	Date	Reason for revision			
Rev 00	22/04/2022	First issue			

CONTENTS

1	INT	RODUCTION	. 1
	1.1	Commissioning	. 1
	1.2	Background	. 1
		1.2.1 Hertfordshire Minerals Local Plan	. 1
		1.2.2 Regulatory correspondence	. 2
	1.3	Key objectives	. 2
	1.4	Scope of works	. 2
		1.4.1 Desk based assessment	. 2
		1.4.2 Intrusive site investigation	. 2
		1.4.3 Mineral resource quantification, viability of prior extraction assessment and preliminary minerals management	. 3
	1.5	Existing reports	. 3
2	SITI	DETAILS	. 4
	2.1	Site location and description	. 4
		2.1.1 Historical/current land uses of site and surrounding area of relevance to this assessment	. 4
	2.2	Ecological context	. 4
	2.3	Geological context	. 5
	2.4	Hydrogeological context	. 5
	2.5	Flood risk	. 6
	2.6	Transport Infrastructure/ public rights of way	. 6
3	SITI	INVESTIGATION STRATEGY & METHODOLOGY	. 7
	3.1	Introduction	. 7
	3.2	Selection of investigation methods	. 7
	3.3	Investigation strategy	. 7
		3.3.1 Implementation of investigation works	. 8
		3.3.2 Groundwater monitoring	. 8
	3.4	Laboratory testing	. 8
		3.4.1 Geotechnical analysis of soils	. 8
4	SITI	INVESTIGATION FACTUAL FINDINGS	10
	4.1	Ground conditions encountered	10
		4.1.1 Topsoil (overburden)	11
		4.1.2 Kesgrave Catchment Subgroup	11
	4.2	Groundwater	12
		4.2.1 Groundwater encountered during intrusive works	12
	4.3	Geotechnical laboratory results	12
5	MIN	ERALS RESOURCE QUANTIFICATION	13
	5.1	Minerals resource quantification methodology	13
	5.2	Assessment of extent and quality of potential mineral resources	13
		5.2.1 Gradings analysis	13
		5.2.2 Overburden / interburden to mineral resource ratios	14
		5.2.3 Mineral resource quantity	15

6	PRI	OR EX	RACTION - VIABILITY ASSESSMENT	17
	6.1	Propos	sed development and potential sterilisation of resources	17
	6.2	Oppor	tunities and constraints to prior mineral extraction	17
		6.2.1	Physical and environmental constraints to prior extraction of mineral resources	17
		6.2.2	Restoration requirements	18
	6.3	Econo	mic considerations to prior extraction – commercial value and marketplace	19
7	CON	NCLUS	ONS AND RECOMMENDATIONS	21
RE	FERI	ENCES		23

FIGURES

Figure 1	Site location plan
Figure 2	Exploratory hole location plan
Figure 3	Illustrative masterplan

APPENDICES

Appendix A	Service constraints
Appendix B	Hertfordshire County council location of existing sites and preferred areas plan
Appendix C	BGS Borehole Record
Appendix D	Exploratory Hole Records
Appendix E	Laboratory Classification test results

1 INTRODUCTION

1.1 Commissioning

RSK Environment Limited (RSK) were commissioned by McPartland Planning Ltd. (The Client) to carry out a Minerals Resource Assessment of the land at St. Stephens Green Farm, Chiswell Green Lane, St. Albans, Herts. The project was carried out to an agreed brief as set out in RSK's proposal (1922316 T01 (00), dated 1st March 2022).

RSK have carried out a site investigation to assess the potential workable mineral deposits beneath the site and produce the findings in this Minerals Resource Assessment report.

This report is subject to the RSK service constraints given in **Appendix A** and limitations that may be described through this document.

1.2 Background

1.2.1 Hertfordshire Minerals Local Plan

The National Planning Policy Framework (NPPF) sets out requirements for local planning authorities to ensure the safeguarding of mineral resources and promote the sustainable use of minerals, so that known locations of 'locally and nationally important minerals' do not get sterilised by non-mineral development. To manage minerals within the county, Hertfordshire County Council (ECC) has developed and adopted the Minerals Local Plan 2002-2016 (MLP), which includes the Strategic Policies. The site falls entirely within the 'Sand and Gravel Belt' as identified in the Minerals Local Plan 2002-2016. The Sand and Gravel Belt' as identified in the Minerals Local Plan 2002-2016. The Sand and Gravel Belt spans across the southern part of the county and contains the most concentrated deposits of sand and gravel in Hertfordshire.

Adopted Minerals Local Plan Policy 5 (Mineral Sterilisation) sets out that where other development is proposed, prior extraction of mineral resources should be encouraged. Whilst the policy does not create a presumption that the mineral resource beneath the site will ever be worked, it acknowledges the possibility that the known location of the mineral resource may be needlessly sterilised by non-mineral development (should minerals planning policy not be implemented).

In the context of the above, the Minerals Planning Authority at Hertfordshire County Council objected to the planning application and set out that "the County Council will object to any development proposal within, or adjacent to areas of potential mineral resource, which would prevent, or prejudice potential future mineral extraction unless is clearly demonstrated that:

- *i.* The land affected does not contain potential workable mineral deposits; and/or
- ii. There is an overriding need for the development; and
- iii. The mineral cannot practically be extracted in advance."

1.2.2 Regulatory correspondence

A planning objection from the Minerals Planning Authority (Ref: SPU/BQMW, dated 17th December 2021) has been received. The objection specifies the requirement for a site investigation and evaluation by way of a Minerals Resource Assessment in order to assess the potential for workable mineral deposits at the site and the possibility of mineral sterilisation.

1.3 Key objectives

The objective of the work is:

- identification of all contextual information at the site to inform constraints that may impact on mineral extraction;
- to identify the nature and extent of the existing mineral resource beneath the site through an appropriately detailed and policy compliant intrusive site investigation; and
- consideration to the practicality and economic viability of prior mineral extraction and restoration options at the site.

1.4 Scope of works

The scope of this assessment has been developed in accordance with relevant British Standards and authoritative technical guidance as referenced throughout the report.

The scope of the intrusive investigation has been designed in accordance with the recommendations contained within BS5930:2015 Code of Practice for Ground Investigations (BSi, 2016), which maintains compliance with BS EN 1997-1 and 1997-2 and their related standards. It has also been developed in accordance with the policy framework set out within the Hertfordshire Mineral Local Plan 2002-2016.

In order to maintain compliance with the above, the agreed scope of works for the assessment comprised the following:

1.4.1 Desk based assessment

- review of relevant existing reports pertaining to the site and adjacent areas including a Desk Study and Preliminary Risk Assessment undertaken by Structural Soils Ltd. in June 2021;
- assessment of local geology through published geological records, hydrogeology and surface water setting; and
- consideration of pertinent contextual information (such as nature conservation designations (ecology), heritage designations, landscape character, proximity to local communities, land stability, highways infrastructure).

1.4.2 Intrusive site investigation

• design and implementation of a detailed intrusive site investigation to assess the underlying mineral resource comprising the drilling of five cable percussive boreholes

through the full extent of the deposit. Boreholes were positioned spatially in compliance with the policy requirements of HCC Minerals and Waste; and

• a comprehensive programme of material sampling and laboratory testing to enable the classification of materials representative of the full vertical extent of the resource.

1.4.3 Mineral resource quantification, viability of prior extraction assessment and preliminary minerals management

- discussion regarding mineral extent (quantity) and quality with respect to aggregate specifications required for construction;
- consideration to the practicality of prior extraction of mineral resource including its potential value, current marketplace and applicability of prior extraction with respect to the proposed residential redevelopment of the site including restoration options; and
- opportunities for the opportunistic extraction as part of the redevelopment of the site (i.e. to ensure maximum possible recovery of minerals from construction and excavation wastes to ensure the sustainable use of site won mineral).

1.5 Existing reports

The following reports detailing previous works at the site were made available for review:

- Structural Soils Ltd., Desk Study and Preliminary Risk Assessment North Chiswell Green, 563403-1(00), June 2021.
- Cherryfield Ecology Ltd., Ecology Appraisal for the site of: Chiswell Green Lane and east of The Croft, Chiswell Green, AL2 3AJ, June 2021

Pertinent information from these assessments has been included within this report.

2 SITE DETAILS

2.1 Site location and description

The Site is located to the north of Chiswell Green Lane in Chiswell Green, approximately 2.8 km south-west of St. Albans. The Site covers an area of approximately 14.5 Ha and is centred on National Grid Reference 512830, 204670 and comprises a polo field with associated paddocks.

A site location plan is provided on **Figure 1** whilst the site boundary and current site layout are shown on **Figure 2**.

The site's immediate surrounding land uses are described below, in Table 1.

North	To the north of the site is woodland and well maintained fields, possibly paddocks, associated with a private residence.
East	Immediately to the east are further paddocks beyond which is a residential area comprising low-rise housing.
South	Mixed use, including a livery yard and riding school, a used car dealership and ground belonging to The Royal Entomological Society.
West	A small area of woodland beyond which are paddocks associated with a private residence.

Table 1Surrounding land uses

2.1.1 Historical/current land uses of site and surrounding area of relevance to this assessment

The first historical records available for the site (dated 1880) show the site was separated into four agricultural fields. The site changes little up to the present day, with a small forested area appearing in the centre of the site in the 1920s and stable buildings being constructed around 1999 in the east of the site. The large building on the southern side of the site was constructed sometime between 2018 and 2021.

The current site surroundings are characterised by largely open space, with residential use to the east and light commercial use in the south. Historically, there were chalk pits and gravel pits in the area in the late 19th and early 20th centuries. The village of Chiswell Green expanded significantly from the 1930s to the 1970s with the addition of residential properties.

2.2 Ecological context

The preliminary ecological appraisal referenced within **Section 1.5** confirmed the site to be of limited ecological interest with the proposed development presenting a low level impact. Areas of interest on-site are restricted to the hedgerows on site and the internal framework of buildings which have suitable nesting habitat to support breeding birds. The hedgerows on site have the potential to support amphibians and reptiles but it is noted the majority of the site is undesirable to amphibians and reptiles as it is heavily grazed and cut.

2.3 Geological context

The published geological records for the area indicate that the site is generally underlain by the Kesgrave Catchment Subgroup (Sand and Gravel) over bedrock of the Lewes Nodular Chalk Formation and Seaford Chalk Formation (undifferentiated). The superficial deposits are, however, shown as absent in the north-west of the site.

The site is not located within a Mineral Consultation Area or Preferred Area, according to the Hertfordshire Country Council Minerals Local Plan Review 2002 – 2016 or Mineral Consultation Areas in Hertfordshire Supplementary Planning Document, but is located within a Mineral Safeguarding Area in the emerging minerals plan, which is due for adoption in 2022.

A BGS (formerly institute of geological sciences) borehole (TL10SW22) advanced approximately 30m south-west of the site as part of the minerals resource assessment drilling programme of the 1960's/1970's, recorded the following geological successions:

- 'soil' to 0.4 mbgl (assumed topsoil);
- Brown sandy clay to 3.1 mbgl;
- "Very clayey' gravel to 6.1 mbgl. The gravel is described as mainly coarse with some fine, subangular to well-rounded flint with some quartz and quartzite. Sand is mainly fine to medium with some coarse;
- Brown and black mottled stiff clay with angular flint cobbles to 6.6 mbgl;
- Brown pebbly sandy clay with rounded flint pebbles to 6.7 mbgl;
- Brown and black mottled stiff clay with angular flint cobbles to 8.0 mbgl;
- Soft white chalk proven to 8.20 mbgl.

No groundwater was encountered.

The mean particle size distribution (gradings analysis) within the granular portion of the soil profile was assessed as:

- **Gravel** = 40%
- **Sand** = 32%
- Fines = 28%

In summary, the borehole recorded some 3.0m thickness of potential aggregate, however, laboratory testing recorded a high fines content, suggesting the resource is unlikely to be economically viable for extraction.

A copy of the historical borehole record is included in **Appendix C**.

2.4 Hydrogeological context

Based upon the published geological mapping for the area, the hydrogeology beneath the site is understood to comprise an unconfined shallow aquifer associated with the superficial deposits. The aquifer is classified by the Environment Agency as a secondary 'A' aquifer with respect to groundwater sensitivity. The Chalk bedrock is classified as a Principal Aquifer.

Given the unconfined nature of the shallow aquifer beneath the site and the anticipated permeability of the Kesgrave Catchment Subgroup, the groundwater in the local area is expected to be in hydraulic continuity. The BGS borehole advanced to 8 mbgl did not encounter groundwater.

Information available on the MAGIC (Defra) website indicates that the site lies within a Source Protection Zone (SPZ) II and III. There are two (2 no.) ground water abstractions with 1km of the site, both records relate to abstraction 158m south-west of the site, abstracting water for spray irrigation, horticulture and nurseries.

2.5 Flood risk

A flood risk assessment has been completed for the site (Floodsmart report reference 75188R1, dated July 2021). The report concluded that whilst the site was at a low risk of fluvial flooding, very low risk of flooding from rivers and seas and negligible risk of flooding from groundwater, it was at a very low to high risk from pluvial /surface water flooding. Given the identified risk from pluvial/surface water flooding (where flood depths could be up to 0.30m in depth) mitigation measures were recommended to ensure that finished floor levels should be set above this level.

2.6 Transport Infrastructure/ public rights of way

The main road link in the vicinity of the site comprises Chiswell Green Lane to the south and The Croft to the east. Chiswell Green Lane provides vehicular access to Chiswell Green village centre to the east. The Croft does not currently provide vehicular access.

The relevant major transport route that serves the wider regional area comprises the A414, located approximately 0.9km north of Chiswell Green. The road can be reached from the site via the B4630 to the east which runs through Chiswell Green. The A414 route runs east to west through Hertfordshire and Essex from Hemel Hempstead, Herts (and the M1) to Maldon, Essex. In addition to the A414, North Orbital Road runs north to south approximately 0.5 km to the east of the site. Accessed from the site via Tippendell Lane in Chiswell Green village centre, North Orbital Road provides a link to the A414 to the north and the M25 to the south.

The road network immediately around the site is characterised by minor routes that connect the nearby residential estates, businesses and farms.

Railway infrastructure in the area comprises the Abbey Line located approximately 2km to the north-east, running from Watford to St. Albans Abbey via passenger stations. The Midland Main Line is the major railway line in the area, running from London to Nottingham and Sheffield, the nearest station is St. Albans city, approximately 3.5 km to the north-east. No rail freight depots, terminals or infrastructure have been identified in proximity to the site.

There are no known public rights of way within the site boundaries.

3 SITE INVESTIGATION STRATEGY & METHODOLOGY

3.1 Introduction

Structural Soils Ltd. initially carried out a Desk Study and Preliminary Risk Assessment in 2021. The initial assessment focussed on providing an environmental and geotechnical appraisal of the site.

The intrusive investigation presented here was specifically designed to investigate the underlying mineral resource. The specific objectives were as follows:

- to establish the ground conditions underlying the site including the extent and thickness of overburden, sand and gravel (resource), and any interburden; and
- to assess characteristic properties of soils through a programme of soil sampling and testing.

3.2 Selection of investigation methods

The techniques adopted for the supplementary investigation were chosen with consideration to the objectives and site constraints, which are described in further detail below.

Cable percussive drilling was adopted for the investigation based on the targeted drill depths, the opportunity to collect bulk disturbed samples at regular intervals and to make groundwater observations.

Prior to conducting intrusive works, utility service plans were obtained and buried service clearance undertaken in line with RSK's health and safety procedures.

3.3 Investigation strategy

The ground investigation was carried out using intrusive ground investigation techniques in general accordance with the recommendations of BS5930: 2015 Code of practice for ground investigations, which maintains compliance with BS EN 1997-1 and 1997-2 and their related standards.

The proposed scope of works and the proposed exploratory hole location plan detailing the spatial distancing of exploratory locations was issued to Hertfordshire District Council for their approval prior to the commencement of investigation. The positioning of drilling investigation locations included the application of a 100 m buffer zone from the front elevation of neighbouring residential properties along the eastern flank and south-eastern corner of the site. A 30m buffer was adopted along the remaining boundaries to take in to account the anticipated maximum temporary slope angle of 1v:3H for quarry faces based on an anticipated bedrock depth of approximately 10 m below existing ground level. Introduction of the buffers reduces the area of potential extractable resource significantly to approximately 8 Ha. The consequent limitation to site exploration reflects the constraints applicable to any potential prior mineral resource extraction operation, whereby any potential resource located within the buffer zone would be inaccessible due

to the sensitivity of adjacent residential land use. It is understood from correspondence with the client that the proposed scope of works was subsequently approved by HCC.

Details of the supplementary investigation location rationale are presented in **Table 2**.

Five cable percussive boreholes were drilled to a maximum depth of 9.50 mbgl.

 Table 2
 Exploratory hole location rationale

Investigation type	Number	Designation	Monitoring well installation	Rationale examples below
Boreholes by cable percussive methods	5	BH01 to BH05	None	To prove the extent and quality of the mineral resource beneath the site and to obtain bulk soil samples for geotechnical/classification testing purposes.

3.3.1 Implementation of investigation works

The exploratory holes were logged by a suitably qualified engineer in accordance with the standards defined within BS 5930:2015 (which incorporates the requirements of BS EN ISO 14688-1, 14688-2 and 14689-1).

The soil sampling and analysis strategy was specifically designed to characterise the entire vertical succession of the ground profile encountered in addition to providing opportunity to collect representative soil samples for future geotechnical testing purposes.

In order to maximise sample recovery and reduce the loss of fines during the sampling process, borehole arisings were retained in sample buckets to allow fine sediment to fall out of participle suspension prior to decanting the material into sample containers.

3.3.2 Groundwater monitoring

Depths to groundwater were recorded using an electronic dip meter during the drilling and at completion of the boreholes.

3.4 Laboratory testing

Laboratory testing was undertaken by a UKAS accredited laboratory with ISO17025 and MCERTS accredited test methods, as shown in the laboratory test certificates appended.

3.4.1 Geotechnical analysis of soils

Bulk soil samples were retrieved for geotechnical classification testing with the depth and nature of samples detailed within the exploratory hole records.

Where appropriate, testing was undertaken in accordance with BS 1377:1990 Method of Tests for Soils for Civil Engineering Purposes or, where superseded, by the relevant part of BS EN ISO 17892:2014 Geotechnical investigation and testing - Laboratory Testing of Soil.

The programme of geotechnical tests undertaken on samples obtained from the intrusive investigation is presented in **Table 3**. The results and UKAS accreditation of testing methods are shown in **Appendix E**.

Table 3 Summary of geotechnical testing undertaken

Strata	Tests undertaken	No. of tests
Kesgrave Catchment Subgroup	Particle Size Distribution sieving method to BS EN ISO 17892-4 2016 Clause 5.2	18

4 SITE INVESTIGATION FACTUAL FINDINGS

The results of the intrusive site investigation and the subsequent geotechnical laboratory analysis on samples, are detailed in the sections below.

4.1 Ground conditions encountered

The descriptions of the strata encountered, sample lists, field observations of soil and groundwater and in-situ testing, are included on the exploratory hole records presented in **Appendix D**.

The exploratory holes revealed that the site is underlain by topsoil 'overburden' overlying a variable sequence of predominantly granular deposits of the Kesgrave Catchment Subgroup. The Kesgrave Catchment Subgroup was variable in thickness and locally had an overburden of clay. The clay content within the Kesgrave Catchment Sub Group increased towards the north west of the site, where the stratum is predicted to feather out. The surface of the chalk bedrock was proven towards the base of all borehole locations across the site.

The ground conditions reported indicate geological conditions similar to those initially recorded by historical IMAU (BGS) mineral assessment borehole TL10SW22 (advanced to the south of the site in 1972).

For the purpose of discussion, the ground conditions encountered during the supplementary fieldworks are summarised below in **Table 4**, whilst the strata are discussed in more detail within the following subsections. Whilst the borehole data provided by TL10SW22 has been considered, it is omitted from the detailed resource assessment given that it lies outside the site boundary.

Stratum		Exploratory holes encountered	Depth to top of stratum m bgl (mAOD)	Proven thickness (m)
Topsoil (overt	ourden)	BH01 to BH05	Ground level	0.50 to 0.60
	Cohesive (overburden)	BH05	0.50 (100.09)	1.50
Kesgrave Catchment Subgroup	Granular (resource)	BH01 to BH05	0.50 to 2.00 (98.59 to 100.09)	1.00 to 4.00
	Cohesive (interburden)	BH01 and BH04	2.00 to 4.30 (97.29 to 98.59)	1.40 to 1.50
Lewes Nodular Chalk Formation And Seaford Chalk Formation (undifferentiated)		BH01 to BH05	3.50 to 8.50 (92.09 to 97.09)	Not proven

Table 4 General succession of strata encountered

4.1.1 Topsoil (overburden)

A mantle of topsoil was encountered to outcrop beneath the site. The material was described as a brown or dark brown with varying constituents of clay, sand and gravel, extending to a maximum depth of 0.60 m.

4.1.2 Kesgrave Catchment Subgroup

4.1.2.1 Cohesive Deposits (Overburden)

Beneath the topsoil in BH05, a discontinuous 1.50m thick cohesive unit was encountered. Described as a firm brown mottled orangish brown and dark brown slightly gravelly sandy clay. The gravel was recorded as subangular to rounded fine and medium flint.

A summary of the in-situ and laboratory test results recorded in this stratum are presented in **Table 5.**

Table 5Summary of laboratory test results for Kesgrave Catchment Subgroup
Cohesive Deposits (Overburden)

	Ra		
Soil parameters	Grainsize	Sample proportion (%)	Reference
	Cobbles	0	
Grading (%)	Gravel	17	Appendix E
Grading (76)	Sand	17	
	Silt/Clay	66	

4.1.2.2 Granular Deposits (mineral resource)

Sub cropping beneath either the Cohesive Deposits (BH05) or directly beneath the topsoil (BH01 to BH04) were granular deposits. The material was found to be variable in composition and in thickness. Ranging in thickness from 1.00m to 4.00m, the soils were encountered as an interbedded sequences of sandy gravel and gravelly sand with a variable proportion of a fine secondary fraction. These soils may be classified as the 'mineral resource' for the purposes of the assessment. The lithology of the gravel was predominantly flint.

A summary of the in-situ and laboratory test results recorded in this stratum are presented in **Table 6**.

Table 6Summary of in-situ and laboratory test results for Kesgrave Catchment
Subgroup Granular Deposits (Resource)

	Ra			
Soil parameters	Grainsize	Sample proportion (%)	Reference	
Crading (%)	Cobbles	0 to 13	Appondix C	
	Gravel	2 to 68	Appendix G	

McPartland Planning Ltd.

	Ra	nge	
Soil parameters	Grainsize	Sample proportion (%)	Reference
	Sand	20 to 83	
	Silt/Clay	4 to 31	

4.1.2.3 Cohesive Deposits (Interburden)

A horizon of cohesive soil was encountered at the base of the granular deposits within two of the borehole positions (BH01 and BH04), identified between the depths of 2.50 m and 6.00 mbgl and ranging in thickness between 1.00 m and 2.50 m. The material was typically described as firm to stiff brown slightly sandy (slightly) gravelly clay. The lithology of the gravel comprised flint and chalk.

A summary of the in-situ and laboratory test results recorded in this stratum are presented in **Table 7.**

Table 7Summary of laboratory test results for Kesgrave Catchment Subgroup
Cohesive Deposits (Basal interburden)

	Ra			
Soil parameters	Grainsize	Sample proportion (%)	Reference	
	Cobbles	0.0 to 13		
Crading (%)	Gravel	15 to 44	Appondix C	
	Sand	9 to 35	- Appendix G	
	Silt/Clay	41 to 44		

4.1.2.4 Chalk

The upper weathered surface of the Lewes Nodular Chalk was encountered beneath the Kesgrave Catchment Sub Group at depths ranging between 3.50m and 8.50m in boreholes BH01 and BH05, respectively.

4.2 Groundwater

4.2.1 Groundwater encountered during intrusive works

Groundwater was not encountered during the progression of the intrusive investigation.

4.3 Geotechnical laboratory results

The results of the grading analysis completed on bulk granular samples is discussed in the sections below and presented in **Appendix E**.

5 MINERALS RESOURCE QUANTIFICATION

5.1 Minerals resource quantification methodology

In order to quantify the size and quality of the potential mineral resource, RSK have assessed the data obtained from the ground investigation.

To initially establish whether the site may contain potentially exploitable materials of economic interest, the following arbitrary physical criteria have been adopted, as advised by the Institute of Geological Sciences Mineral Assessment Reporting series:

- The deposit should average at least 1 m in thickness;
- The ratio of overburden/interburden to sand and gravel should be no more than 3:1;
- The proportion of fines should ideally be below 25% and should not exceed 40%; and
- The deposit should lie within 25 m of the surface.

It should be noted however, that the minerals industry often adopts their own set of criteria for assessing the economic viability of a mineral resource, which are generally considered to be more stringent than those adopted within this assessment.

5.2 Assessment of extent and quality of potential mineral resources

The exploratory hole locations formed during RSK's site investigation are presented on **Figure 2**.

At each location, boreholes were advanced through the full thickness of the Kesgrave Catchment Subgroup (potential mineral resource), terminating within the underlying solid geology (Lewes Nodular Chalk Formation and Seaford Chalk Formation (undifferentiated). Representative soil samples were obtained from the full vertical succession of the stratum sequence for subsequent laboratory analysis.

The exploratory holes revealed that the site is underlain by topsoil 'overburden' overlying a variable sequence of predominantly granular deposits of the Kesgrave Catchment Subgroup, at the base of which is a clay with a secondary granular constituent. The Kesgrave Catchment Subgroup was variable in thickness and locally had an overburden of clay. The stratum graded into a predominately cohesive soil towards the north west of the site, before feathering out. The surface of the chalk bedrock was proven towards the base of all borehole locations across the site.

5.2.1 Gradings analysis

Representative soil samples were retrieved from the Kesgrave Catchment Subgroup during the investigation. 18 No. samples were subsequently scheduled for gradings analysis (particle size distribution (PSD) testing), to ascertain the proportions of sand, gravel and fines (silt and clay) within the ground profile.

A summary of the results is presented in **Table 8** overleaf.

		Parti	cle Size D	istributio	n (%)
Location	Depth (m bgl)		Coarse		Fine
		Cobbles	Gravel	Sand	Silt/clay
BH1	0.50	0	22	50	28
BH1	2.00	9	15	35	41
BH1	3.00	0	44	12	44
BH2	1.20	0	11	65	24
BH2	3.00	5	48	32	15
BH2	4.50	13	36	20	31
ВНЗ	1.20	0	56	30	14
ВНЗ	2.00	0	44	44	12
ВНЗ	3.00	0	53	36	11
BH4	1.20	0	44	42	14
BH4	2.50	3	68	25	4
BH4	4.00	13	34	9	44
BH5	0.50	0	17	17	66
BH5	2.40	0	2	83	15
BH5	3.00	0	45	51	4
BH5	4.00	0	47	48	5
BH5	5.00	2	33	45	20
BH5	7.00	0	35	49	16
(Average of results >25% fines)	-	1.9	40.5	45.8	12.8
Notes: particle size rang	ges in accordance with ted – fines content abo	BS5930 (20 ve 25% min)15) imum thresh	old criteria	

Table 8 Summary of Particle Size Distribution Results

The particle size distribution analysis confirmed that with the exception of the soils recorded within borehole BH1 the majority of the samples tested from the mineral resource contained a fines content below the minimum threshold criteria of 25%.

5.2.2 Overburden / interburden to mineral resource ratios

Typically, sand and gravel extraction initially involve the removal of overburden and interburden to gain access to the underlying mineral. The thicknesses of overburden and interburden are therefore influential factors when considering the economic viability of a mineral extraction operation. Acceptability criteria for overburden/interburden to mineral

ratios are variable and dependent upon Mineral Planning Authorities/ Industry operators, although it is commonly quoted by guidance that they should not exceed 3:1.

The overburden/interburden to mineral resource ratios calculated for the site are detailed within **Table 9** below.

Location	Overburden (m)	Upper S&G (m)	Calculated Ratio	Pass Criteria 3:1							
BH01	Mineral fo	ound to	contain >25%	₀ fines							
BH02	0.50	4.0	0.13:1	Yes							
BH03	0.50	3.8	0.13:1	Yes							
BH04	0.60	2.7	0.22:1	Yes							
BH05	2.00	4	0.5:1	Yes							
(Average)	-	-	(0.25:1)	Yes							
Pass Rate (%)	-	-	-	80%							
Notes: S&G – Sand and Gravel, OB – Overburden, IB – Interburden											

Table 9 Summary of overburden/interburden to mineral resource ratios

With the exception of BH01, where no viable resource was encountered (based on grading), the calculated ratios are below the adopted 3:1 acceptance threshold in all the remaining boreholes.

5.2.3 Mineral resource quantity

The Pan-European Reserves and Resources Reporting Committee (PERC) provides three definitions for the estimation of mineral resources based upon increasing levels of geological confidence:

- Inferred Mineral Resources quantity and grade/quality are estimated on the basis of limited geological evidence and sampling;
- Indicated Mineral Resources quantity, grade/quality, densities, shape and physical characteristics are estimated with sufficient confidence to support planning and evaluation of the economic viability of the deposit. Indicated mineral resources may only be converted to a probable mineral reserve; and
- Measured Mineral Resources quantity, grade/quality, densities, shape and physical characteristics are estimated with confidence sufficient to allow final evaluation of the economic viability of the deposit. Geological evidence is derived from detailed and reliable exploration, sampling and testing and is sufficient to confirm geological and grade, quality continuity between points of observation. May be converted to a proved mineral reserve or a to a probable mineral reserve.

The scope of the ground investigation carried out is considered sufficient to indicate mineral resources with sufficient confidence to support planning and evaluation of the economic viability of the deposit.

Mineral Reserve – A Mineral Reserve is the economically mineable part of a measured and/or indicated mineral resource. It includes diluting materials and allowances for losses which may occur when the material is mined or extracted as well as the application of modifying factors. Mineral reserves should be reported as inclusive of marginally economic and diluting material, which would subsequently be removed during beneficiation (i.e. processing and treatment prior to point of saleable product).

PERC standards report that portions of a mineral deposit that do not have reasonable prospects for eventual economic extraction must not be included within a mineral reserve estimation. Therefore, the following exclusions (modifying factors) have been applied to the mineral reserve volume calculation:

- overburden and interburden those materials which do not form primary minerals at the site;
- 100 m exclusion zone extending from the boundaries of existing residential properties located to the east and south of the site within which the extraction of minerals would be prohibited;
- the application of a 30 m land margin extending from existing site boundaries to prevent the subsidence/ land slippage of the site perimeter and allow a suitable area for the creation of protective (visual/ acoustic) bunds (composed of stockpiled overburden arisings once stripped from site surface);
- adoption of temporary perimeter excavation faces with safe slope angles of 20 degrees extending to the base of the mineral deposit. Minerals beneath temporary slopes are exempt from extraction and are not accounted for within extractable mineral resource volumes;
- Exclusion of the north western area of the site, where published geological mapping predicts the absence of any potential mineral above the chalk, supported by the results of BH01, where no viable resources of mineral were recorded; and
- whilst not incorporated into the provisional mineral resource calculation, consideration to the positioning of temporary haulage roads serving the excavation, location of pumping equipment for dewatering, silt lagoons, weigh bridges, site accesses, parking, and ancillary plant and infrastructure must all be allocated and applied to final volume calculations to inform prior extraction proposals/ detailed quarry design.

Based upon these factors, the area of the site underlain by potential extractable resource is 6.43 Hectares, using an average thickness of resource deposits of 3.65m, a total volume of **234,695** m^3 potentially extractable mineral resource (sand & gravel) has been calculated to be present beneath the site. This equates to **387,246 tonnes (0.39Mt)** of sand and gravel (calculated assuming a bulk density of 1650kg/m³ (for naturally occurring dry sand and gravel). It is noted that this figure does not take into consideration the potential for further reduction due to the calculated average fines content of 12.8%.

6 PRIOR EXTRACTION - VIABILITY ASSESSMENT

In order to comply with national planning policy and given the identification of a technically extractable mineral reserve beneath the site, it is necessary to consider the potential for prior mineral extraction, both as a standalone operation and as part of the redevelopment scheme.

6.1 Proposed development and potential sterilisation of resources

The proposed residential development is understood to comprise 330 dwellings, with associated car parking, public open space areas and the construction of a new access road off Chiswell Green to the south-east of the site. The outside of the site will be surrounded by a protected green buffer zone and memorial park, with a new public right of way in the south of the site.

An illustrative masterplan is included as Figure 3.

The ground investigation identified the presence of potentially extractable sand and gravel underlying the site, albeit of limited thickness and quality. Therefore, unless the sand and gravel is prior extracted and/ or unless policy is enacted to ensure that the developer employs sustainable construction practices to maximise reuse of the site-won minerals, the mineral reserve is considered at risk from sterilisation.

The viability of prior extraction and the application of sustainable development practices are further explored in the sections below.

6.2 Opportunities and constraints to prior mineral extraction

The minerals resource assessment has identified a potentially extractable reserve of some 0.39 Mt of sand and gravel beneath the site. No groundwater was encountered within the resource and so dewatering is unlikely to be required.

6.2.1 Physical and environmental constraints to prior extraction of mineral resources

The following physical and environmental constraints to the prior extraction of mineral resources have been considered:

- The site is bound to the east and south-east by existing residential properties. A minimum 100 m 'buffer zone' from a prior extraction excavation face to the wall of a residential property is required to minimise the impact of working on local amenity. The application of such an exclusion (no dig) zone at the site will vastly reduce the potential workable area, and therefore impose a limit to the overall extractable volume of minerals (as illustrated by the volume calculations). This will be an influential factor for operators when considering the economic prospects of prior extraction at the site.
- The processing and transportation of minerals can lead to adverse impacts on the local environment and community. The processing of minerals using quarry plant and

infrastructure produces excessive noise and dust and would therefore be unsuitable for placement close to existing housing (i.e. within 100 m buffer zone). Processing plant and infrastructure would therefore likely be placed within the footprint of the excavation, potentially requiring relocation during the extraction period, creating additional complications to quarry layout design and to maintaining a safe working environment during operation;

- As part of processing and water treatment/ handling at the site, it will also be necessary to construct silt lagoons/ ponds to facilitate the settlement of fines from aggregate washouts. Whilst it may be possible for these features to be located within the buffer zone, lagoons would normally be required as close to site plant as possible to reduce pumping costs. With the creation of silt lagoons, there is a hazard potential for lagoon failure, the impacts of which would cause significant environmental harm to nearby watercourses, wildlife and the local area. In addition to hazards associated with silt lagoons, the clearance of the site to facilitate quarrying may lead to greater run-offs and heightened rates of erosion, which consequently adds silt to local watercourses, potentially altering local drainage patterns and subsurface infiltration rates (impacting on underlying aquifers); and
- Quarries are also generators of high frequency HGV traffic, leading to noise, air pollution, vibration, dust, congestion and a potential road safety hazard. The haulage of minerals by rail and water are preferential options for transportation and are advocated by MPAs. The main transport link available to The Site are the A414 and M25, access to both is through the village of Chiswell Green. The immediate land uses adjacent to the route comprise residential and retail properties. An alternate route via Noke Lane to the M25 is unlikely to be suitable for HGV traffic due to the narrow width of the road. Any potential application to extract minerals would need to be accompanied by a comprehensive transport assessment to quantify potential impacts on the surrounding environs. As a rough guide, the average HGV load is assumed to be 20t of aggregate. When considering the exportation of some 0.39Mt of processed minerals from the site, this would generate approximately 19,500 HGV movements, both in and out of the gate. HGV movements of a similar order would also (hypothetically) be required should high level restoration of the excavation be required. resulting in potential HGV movements totalling more than 78,000 over the extraction/ restoration period. The magnitude and intensity of such a large scale haulage operation is therefore highly likely to prove incompatible with the local community.

6.2.2 Restoration requirements

The NPPF states that planning authorities should provide for restoration and beneficial after-use at the earliest opportunity, to be carried out to high environmental standards. Restoration covers any operations designed to return the land to an acceptable landform, environmental condition or beneficial after-use(s). It includes events that take place before and during extraction (such as the stripping and protection of soils), and operations after extraction up until an after-use is established on site.

Restoration options vary depending upon site conditions, but for dry quarries, can include residential land use and other land uses which require tight controls on long term ground movements within the restored surface. This can be achieved either by low-level restoration (whereby ground levels are not reinstated) or where ground levels are fully

reinstated, by means of controlled backfilling and compaction. Formerly, infilling was a common practice in the restoration process. However, volumes of suitable infill materials have steadily declined due to improvements in recycling and sustainable waste management and therefore, low-level restoration for future residential use is often the default position due to difficulties in acquiring sufficient quantities of inert materials to backfill to original contour levels.

It is noted that due to the requirement to maintain site levels to mitigate the risks identified from surface water flooding, high-level restoration will be required unless alternative flood mitigation measures are incorporated within the development.

High level restoration will dictate the requirement for selected homogeneous fill materials to be imported, placed and compacted in accordance with a strict engineering specification to provide a restored development platform. The imported fill will need to be free from contamination to ensure the absence of risk to the future development or the wider environment.

6.3 Economic considerations to prior extraction – commercial value and marketplace

In addition to physical constraints, it is also essential to consider the current marketplace for aggregates as well as the fundamental economics tied to a mineral extraction operation which on balance, will ultimately dictate the practicality of a prior mineral extraction at a site.

Marketplace

The Hertfordshire County Council Local Aggregates Assessment for 2021 stated that whilst the Hertfordshire landbank is below the required 7-year minimum, it is considered that the landbank will increase once Land adjoining Coopers Green receives planning permission. The reserves from this site (3.52Mt) will boost the total reserves figure and subsequently increase the landbank. The review of the Hertfordshire Minerals Local Plan is being undertaken to address the shortfall in supply. It is intended that the identified sites in the emerging Minerals Local Plan (which does not include the subject site), in addition to the remaining reserves at the current permitted sand and gravel sites, will meet the county's future need for land-won sand and gravel.

Standalone mineral extraction

The actual saleable reserve (excluding consideration of the 12.8% fines content) is in the order of 0.39 Mt. Due to the high cost of establishing a new quarry (rather than an extension to an existing site), the aggregate industry will not consider sand and gravel reserves of less than one million tonnes (1 Mt) to be commercially viable for extraction. For example, the cost of providing plant and equipment required to establish a small sand and gravel quarry can range between £500,000 to £4,000,000, and therefore, it is essential that fixed costs and risk can be accommodated over a larger saleable reserve. Whilst potential revenue from the sale of 0.39 Mt of sand and gravel may be in the order of £3.90 million (adopting an average value across products of £10 per tonne) and assuming current sand and gravel sales could accomplish similar returns to those achieved during the pre-recession financial climate, a potential profit in the order of £400,000 may be obtainable over the extraction period. When compared against the potential establishment costs, this confirms the scale of the resource to not be

commercially viable, as the potential establishment costs exceed the subsequent profits anticipated during the extraction period.

Prior mineral extraction and subsequent residential development

Prior extraction of the mineral as a preliminary phase to construction would also require the high level restoration of the resultant excavation to create a suitably stable development platform to accommodate future structures. It is noted that in order to achieve such a platform, restoration would require an engineered design solution, using selected aggregates of similar grade and quantity to those initially extracted. Considering the potential profits generated by the initial sale of aggregates from the site (£400,000), the assessment must also factor in the follow on costs to the developer, including the detailed design, purchase of suitable material, transportation to the site and reengineering of the platform, which could potentially be in excess of £5M (cost estimate from similar restoration projects). On balance therefore, it is clear that the potential benefits afforded by the prior extraction of the reserve as part of the redevelopment scheme are in this instance, far outweighed by the constraints applied to restoring the site, and therefore this approach would not be considered economically viable.

7 CONCLUSIONS AND RECOMMENDATIONS

The completion of intrusive site investigation, which comprised the drilling of five exploratory boreholes through the full vertical succession of the mineral resource at one borehole per 2 Ha (scope approved by Herts County Council), is considered to have robustly characterised the nature (quantity/ quality/ grade/ density) of the underlying mineral resource. In compliance with the Pan-European Reserves and Resources Reporting Committee (PERC) standards, the level of intrusive investigation is considered to be of sufficient quality and detail to inform an 'Indicated' mineral resource calculation, derived from sufficient geological confidence.

The assessment has identified a potential aggregate resource (average 3.65m in thickness) to sub crop beneath the site at relatively shallow depths, with the exception of the north western flank of the site, where the resource was shown to be absent (as predicted by published geological mapping).

The assessment of mineral quality (particle size distribution (grading analysis), deposit thickness/depth and the overburden/interburden to resource ratio) has characterised the majority of the mineral resource (where present) to be technically compliant with the adopted acceptability criteria for an extractable resource (considered to be less stringent criteria than many industry standards).

The total volume of potentially extractable sand and gravel resource beneath the site has been calculated at **0.39 Mt**. This figure excludes areas where it would not be practical to work minerals during extraction (buffer zones, beneath excavation perimeter slopes etc.) but is inclusive of diluting materials (silt/clay fraction).

However, whilst a limited mineral resource has been recorded beneath the site, an initial financial viability assessment has shown that due to high costs associated with establishing a new quarry, the size of the reserve is insufficient (less than half the size commercially required) to offset upfront costs. Financial viability is further reduced by the requirement for high level restoration to provide a suitable development platform for subsequent residential development.

In addition to the above, a number of physical and environmental constraints have been identified within the assessment, which would further constrain mineral extraction from this site, which is currently flanked by residential properties on two sides.

Furthermore, it is noted that the Hertfordshire County Council Local Aggregates Assessment for 2021 confirms that the current landbank (supplemented by the remaining reserves at the current permitted sand and gravel sites) will meet the county's current future need for land-won sand and gravel.

Based on the above, prior mineral extraction from this site is not considered to be viable, either as a standalone project or by extraction prior to redevelopment due to the limited size of the reserve and is further constrained due to its location within proximity to a residential area. It is therefore recommended that sterilization of the reserve be limited by implementation of opportunistic extraction during the proposed development. In order to secure sustainable redevelopment, a minerals management plan should be conditioned as part of the planning approval to maximise the use of the reserve within the proposed development to minimise sterilisation.

A copy of this report should be forwarded to the Minerals Planning Authority at Hertfordshire County Council for their consideration.

REFERENCES

Previous SI reports and other site related information

British Geological Survey website: <u>www.bgs.ac.uk</u>. Accessed April 2022.

British Geological Society (2001). Mineral safeguarding in England: good practice advice.

British Geological Society (2003). Minerals Resources Information in Support of National, Regional and Local Planning.

Cherryfield Ecology Ltd. (2021). Ecology Appraisal for the site of: Chiswell Green Lane and east of The Croft, Chiswell Green, AL2 3AJ

Hertfordshire County Council (no date given). Supplementary Planning Document: Mineral Consultation Areas in Hertfordshire

Hertfordshire County Council (2007). Hertfordshire Minerals Local Plan Review 2002-2016

Hertfordshire County Council (2021).Local Aggregates Assessment 2021.

Institute of Geological Sciences Mineral Assessment (1982) Report 71, The sand and gravel resources of the country around Hemel Hempstead, St. Albans and Watford Hertfordshire

Structural Soils Ltd. (2021). Desk Study and Preliminary Risk Assessment – North Chiswell Green, 563403-1(00)

Standards and guidance

British Standards Institution (BSI) (1990), 'BS 1377:1990. Methods of test for soils for civil engineering purposes'.

British Standards Institution (2015), 'BS 5930:2015. Code of practice for ground investigations'.

British Standards Institution (2011), 'BS 10175:2011 + A2:2017. Investigation of potentially contaminated sites: Code of practice'.

Pan European Reserves and Resources Reporting Committee (PERC), Reporting Standard 2017

FIGURES

Reproduced from Ordnance Survey mapping with the permission of the Controller of Her Majesty's Stationery Office, Crown Copyright. Licence No. 100014807 RSK Group Limited, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT.

		Client: McPartland Planning Ltd.	Figure No: 1
RSK	SITE LOCATION PLAN	Site: Addison Park, Chiswell Green	Job No: 1922316
		Scale: NOT TO SCALE	Source: OS Map

Indicative	Unit	Key:
------------	------	------

- 6-unit apartment block - 6 x 2-bed 61sqm flat
- 6-unit apartment block 3 x 1-bed 50sqm flat - 3 x 2-bed 61sqm flat
- 1-bed dwelling 56sqm
- 2-bed dwelling 96sqm
- 3-bed dwelling 114sqm

Indicative Total: 330 units

Indicative Unit Mix: 182 x 3-bed - 55% 116 x 2-bed - 35% 32 x 1 -bed - 10%

Indicative Area Analysis:

Site area - 142,000sqm / 14.2ha Open space - 3,500sqm / 0.35ha Memorial park - 16,000sqm / 1.6ha Green buffer zone - 18,000sqm / 1.8ha

Overall percentage of green space - 26%

4		
1922316		
Client		

APPENDIX A SERVICE CONSTRAINTS

- 1. This report and the site investigation carried out in connection with the report (together the "Services") were compiled and carried out by RSK Environment Limited (RSK) for McPartland Planning Ltd. (the "client") in accordance with the terms of a contract [RSK Group Standard Terms and Conditions] between RSK and the "client". The Services were performed by RSK with the skill and care ordinarily exercised by a reasonable environmental consultant at the time the Services were performed. Further, and in particular, the Services were performed by RSK taking into account the limits of the scope of works required by the client, the time scale involved and the resources, including financial and manpower resources, agreed between RSK and the client.
- 2. Other than that, expressly contained in paragraph 1 above, RSK provides no other representation or warranty whether express or implied, in relation to the Services.
- 3. Unless otherwise agreed in writing the Services were performed by RSK exclusively for the purposes of the client. RSK is not aware of any interest of or reliance by any party other than the client in or on the Services. Unless expressly provided in writing, RSK does not authorise, consent or condone any party other than the client relying upon the Services. Should this report or any part of this report, or otherwise details of the Services or any part of the Services be made known to any such party, and such party relies thereon that party does so wholly at its own and sole risk and RSK disclaims any liability to such parties. Any such party would be well advised to seek independent advice from a competent environmental consultant and/or lawyer.
- 4. It is RSK's understanding that this report is to be used for the purpose described in the introduction to the report. That purpose was a significant factor in determining the scope and level of the Services. Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of or reliance upon the report in those circumstances by the client without RSK 's review and advice shall be at the client's sole and own risk. Should RSK be requested to review the report after the date of this report, RSK shall be entitled to additional payment at the then existing rates or such other terms as agreed between RSK and the client.
- 5. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should not be relied upon in the future without the written advice of RSK. In the absence of such written advice of RSK, reliance on the report in the future shall be at the client's own and sole risk. Should RSK be requested to review the report in the future, RSK shall be entitled to additional payment at the then existing rate or such other terms as may be agreed between RSK and the client.
- 6. The observations and conclusions described in this report are based solely upon the Services which were provided pursuant to the agreement between the client and RSK. RSK has not performed any observations, investigations, studies or testing not specifically set out or required by the contract between the client and RSK. RSK is not liable for the existence of any condition, the discovery of which would require performance of services not otherwise contained in the Services. For the avoidance of doubt, unless otherwise expressly referred to in the introduction to this report, RSK did not seek to evaluate the presence on or off the site of asbestos, invasive plants, electromagnetic fields, lead paint, heavy metals, radon gas or other radioactive or hazardous materials, unless specifically identified in the Services.
- 7. The Services are based upon RSK's observations of existing physical conditions at the Site gained from a visual inspection of the site together with RSK's interpretation of information, including documentation, obtained from third parties and from the client on the history and usage of the site, unless specifically identified in the Services or accreditation system (such as UKAS ISO 17020:2012 clause 7.1.6):
 - a. the Services were based on information and/or analysis provided by independent testing and information services or laboratories upon which RSK was reasonably entitled to rely
 - b. the Services were limited by the accuracy of the information, including documentation, reviewed by RSK and the observations possible at the time of the visual inspection
 - c. the Services did not attempt to independently verify the accuracy or completeness of information, documentation or materials received from the client or third parties, including laboratories and information services, during the performance of the Services.

RSK is not liable for any inaccurate information or conclusions, the discovery of which inaccuracies required the doing of any act including the gathering of any information which was not reasonably available to RSK and

including the doing of any independent investigation of the information provided to RSK save as otherwise provided in the terms of the contract between the client and RSK.

- 8. The intrusive environmental site investigation aspects of the Services is a limited sampling of the site at predetermined locations based on the known historic / operational configuration of the site. The conclusions given in this report are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around those locations. The extent of the limited area depends on the properties of the materials adjacent and local conditions, together with the position of any current structures and underground utilities and facilities, and natural and other activities on-site. In addition, chemical analysis was carried out for a limited number of parameters [as stipulated in the contract between the client and RSK] [based on an understanding of the available operational and historical information,] and it should not be inferred that other chemical species are not present.
- 9. Any site drawing(s) provided in this report is (are) not meant to be an accurate base plan, but is (are) used to present the general relative locations of features on, and surrounding, the site. Features (intrusive and sample locations etc) annotated on-site plans are not drawn to scale but are centred over the approximate location. Such features should not be used for setting out and should be considered indicative only.

APPENDIX B HERTFORDSHIRE COUNTY COUNCIL LOCATION OF EXISTING SITES AND PREFERRED AREAS PLAN

(c) Crown copyright Reserved Hertfordshire County Council 100019606 2007

APPENDIX C BGS BOREHOLE RECORD

TL 10 SW 22 1257 0449 Bone Hill, St Stephen

Surface level (+112.4 m) +369 ft Water not struck Shell and auger, 6 in (152 mm) diameter January 1972

TL 10 Sw)22 Block B

Mineral 3.0 m Waste 1.9 m Bedrock 0.2 m+

British Geological Survey

Geological classification Thickness Depth Lithology m m 0.4 0.4 Soil 27 3.1 Glacial Sand and Gravel Brown sandy clay 3.0 6.1 'Very clayey' gravel Gravel: mainly coarse with some fine, subangular to well-rounded flint with some quartz and quartzite Sand: mainly fine to medium with some coarse; brown 0.5 6.6 Brown and black mottled stiff clay with angular flint cobbles Brown, pebbly sandy clay with rounded flint pebbles 01 67 Brown and black mottled stiff clay with angular flint cobbles 1.3 8.0 0.2 +82 Soft white chalk Upper Chalk

GRADING

1.0G

Depth below Mean for deposit percentages surface (m) percentages Gravel Fines Sand Fines Sand Gravel -1/16 +1/16-1/4 +1/4-1 +1-4 +4 - 16+16 35 29 14 3 10 9 28 32 40 3.1-4.1 33 4.1-5.1 15 13 11 8 20 32 5.1-6.1 33 7 6 6 16 25 28 16 10 6 15 Mean

Emish Geological Survey

British Geological Survey

British Geological Survey

British Geological Suivey

British Geological Suiver

British Geological Suivey

APPENDIX D EXPLORATORY HOLE RECORDS

Contract:							(Client: Bore					prehole:		
Ad	diso	n Pai	[.] k, Cł	niswe	ll Gr	een		Мс	Partla	nd Plan	ning Limited			BH01	
Contract R	ef:			Start:	16.03	3.22	Ground	Level (m A	OD):	National Gri	d Co-ordinate:	Sheet:			
	1922	316		End:	16.0	3.22		100.55		1	of 1				
San	nples a	and In-si	itu Test	S	ater	kfill									
Depth	No	Туре	Re	sults	Ň	Bac		Description of Strata				(Thick ness)	Legend		
- 0.00-0.50 -	1	В					Brown fine ar	Brown slightly sandy slightly clayey slightly gravelly TOPSOIL. Gravel is ine and medium subangular to rounded flint.						<u>17</u> · <u>1</u> 7 · <u>1</u> 7 · <u>1</u>	
- 0.50-1.00 -	2	В					Orang suban	jish brown s igular to rou	slightly cl nded GR	ayey fine to AVEL of flin	coarse SAND and fine to t.	coarse	-		
- 1.20-1.70	3	В													
- - - 2.00-2.50	4	в					Firm t	Firm brown slightly sandy gravelly CLAY. Gravel is fine and medium							
- - - -							suban	igular to rou	nded flint	t.			- - - (1.50)		
- 3.00-3.50	5	В											- - - -		
- - 3.50-4.50	6	В					White	mottled off	white ar	nd light brov	vn highly weathered struct	ureless	- 3.50 -		
-							CHAL VI/ Dn	.K. Soft clay n).	r matrix w	ith nodules of	of weak chalk and rare flint	(Grade	_ _(1.00)		
-							Boreh	Borehole terminated at 4.50m depth.					4.50		
- - 													-		
													-		
- - - -													- - -		
- - - -													-		
													-		
-															
													-		
-											-				
B	oring F	Progres	s and W	/ater Ob	servati	ions		Chisellir	ng / Slow	Progress					
Date	Date Time Borehole Casing Borehole W Diameter				Water	From	То	Duration	General Remarks						
DateTimeDescriptionDescriptionDeaming DepthDiameter (mm)Diameter Depth16/03/222.50-16/03/224.50-							Depth	0.00	1.20	01:00	 Position checked with Radar, CAT and Genn Inspection pit hand dug No visual or olfactory etail 	Ground I y prior to g to 1.20 evidence	Penetrat excava m depth of	ing tion.	

Method Used:	Inspection pit + Cable percussion	Plan Useo	^{l:} Dando	o 2000 M	lark 2	Drilled By:	???	Logged CDuffield By:	Checked By:	AGS	
								All dimensions in metres	Scale:	1:50	
								 No visual of offactory contamination. No groundwater encoustion. On completion, borehoustic 	untered. ble backfilled	d with arisings.	

Contract:								Client:					Borehole:			
Ac	ldiso	n Pai	rk, Cl	niswe	ll Gr	een		Мо	cPartla	nd Plan	ning Limited			BH02		
Contract F	Ref:			Start:	16.03	3.22	Ground	l Level (m A	AOD): I	National Gri	id Co-ordinate:	Sheet:				
	1922	316		End:	16.03	3.22		104.15		E:5129	967.6 N:204817.6		1	of 1		
Sa	mples a	and In-s	itu Test	s	er				Depth	Materia						
Depth	No	Type	Re	sults	Wat	Backt			D	escription of	of Strata		(Thick	Graphic		
0.00-0.50	1	В					Dark	brown sliah	tlv clavev	sandv grave	elly TOPSOIL.			<u></u>		
							2 direct	si e titi e igi i					- (0.50)	1/ . <u></u>		
0.50-1.00	2	В					Orano	aish brown	clavev fi	ne to coars	se SAND and fine and	medium	0.50	60		
							subar	ngular to rou	unded GR/	AVEL of flin	t. Low cobble content of fli	nt.	-	0.0		
													-	0.0		
1.20-1.70	3	В											-			
													-	\bigcirc		
													-	р О О		
2.00-2.50	4	В											-	0.0		
													[(4 00)	o C		
													_()			
													-			
3.00-3.50	5	В											-	o. :0		
													-	00		
													-	0.0		
_													-			
4.00-4.50	6	В											-			
4.50-5.00	50-5.00 7 B						Browr	n sandy ve led flint and	ery clayey chalk	GRAVEL	of fine to coarse subang	gular to	-	0-70 .0		
													-			
													-	¢ <u>>.</u> ⊅0		
F F0 0 00													-	10		
5.50-6.00	0	В											(2.50)			
													-			
													-			
6 50-7 00	9	в											-	÷		
0.00 1.00													-	ō_J		
7.00-8.00	10	в					White	mottled lic	aht brown	highly weat	thered structureless CHAL	K. Soft	7.00			
							silty c	lay matrix w	vith nodule	s of hard ch	nalk (Grade VI/ Dm).					
													[(1.00)			
-						-	Boreh	ole termina	ated at 8.00	Om depth.			- 8.00			
										-			-			
													-			
													-			
						1					1			1		
Boring Progress and Water C					servati	ions		Chisell	ing / Slow	Progress	General	Rema	arks			
Date	Date Time Borehole Casin Depth Depth				Diame	eter	Water	From	То	Duration (hh:mm)	Contoral	T torrie				
17/03/22	//03/22 4.50 -					.,	Jopan	0.00	1.20	01:00	1. Position checked with Radar, CAT and Gen	Ground F	Penetrat	ing tion		
17/03/22		8.	00	-							2. Inspection pit hand du	ig to 1.20	m depth			
											contamination.	evidence	U			
											4. No groundwater encourses of the second se	untered. ble backfil	lled with	arisinos		
												0				
Method	Inen	ection	nit +	Plar	l			Шт	Drilled	Dave	Logaed C.Duffield	Scale:	<u>1:5(</u> ed) 		
Used:	Cable	percu	Issior	l Use	d: Da	ndo	2000 N	/lark 2	By:	Hutson	By:	By:		AGS		

		Boring Pro	ogress and	vvater Ob	servations		Chisei	ling / Slow	Progress	Conoral Pomarka		
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General Remarks		
	Depth		Depth	Depth	(mm)	Depth			(((((((((((((((((((((((((((((((((((((((1 Depition abacked with Cround Depatrating		
	17/03/22 17/03/22	4.50 - 8.00 -					0.00	1.20	01:00	 Position Critecked with Ground Penetrating Radar, CAT and Genny prior to excavation. Inspection pit hand dug to 1.20m depth. No visual or olfactory evidence of contamination. No groundwater encountered. On completion, borehole backfilled with arisings. 		
ŀ		•					· · · · · · · · · · · · · · · · · · ·					
	Method Used:	Inspec Cable p	tion pit · ercussio	+ ∣Plani on ∣ ^{Used}	ⁱ Dando	o 2000 M	ark 2	Drilled By:	Dave Hutson	By: CDuffield Checked By: AGS		

Contract:								Client:			Borehole:				
Addison Park, Chiswell Gre								Мс	Partla	nd Plan	ning Limited			BH03	
Contract Ref				Start:	17.0	3.22	Ground	Level (m A	0D): 1	National Gri	d Co-ordinate:	Sheet:			
1	922	316		End:	17.0	3.22		105.08		E:5128	393.4 N:204626.0		1	of 1	
Sam	oles a	nd In-si	tu Test	S	Nater	3ackfill			Depth (Thick	Material Graphic					
	1	в		suits			Brown	Brown slightly sandy clavey gravely TOPSOIL Gravel is fine and					ness)		
- 0.00-0.30	'	Б					mediu	m subangul	ar to roun	ided flint.	y TOPSOIL. Glavel is in		(0.50)	. <u> </u>	
- 0.50-1.00	2	В					Orang	ish brown	clavev v	verv fine a	nd medium sandv GRA	VEL of	0.50	5-0 0	
-							suban	gular to rou		-					
-															
1.20-1.70	3	В											-(1.30)		
-													-		
-													2.00		
2.00-2.50	4	В					Orang	ish brown c	ar to roun	e to coarse	SAND and GRAVEL of f	ine and	-	0.0.0	
-							mediu	in subangui					-	$\cap \mathcal{O}_{\circ}^{\subset}$	
-													-	0.0.0	
	_													0.0.C	
- 3.00-3.50 - -	5	В											- (2.30)	0.00	
-													-		
-													-		
- - 4.00-4.50	6	В											-	0.0.0	
-							White	mottled or	ff white	and brown	highly weathered struct	ureless	4.30		
-							CHAL	K. Clayey s	ilty matrix	with nodule	es of weak chalk (Grade VI	/ Dm).	-		
-													-		
5.00-6.00	7	В											(1.70)		
													-		
-													-		
-							<u> </u>						6.00		
-							Boreh	ole terminat	ed at 6.00	Im depth.			-		
-													-		
-													-		
-													-		
													-		
													-		
- -													-		
													-		
-													-		
-													-		
F E													-		
D-	rin - T)rograc		Noto- Ob	00r /21	ione		Chinalli		Drograaa					
ВС	Boring Progress and Water Observa					nole	Water	_ Crisellir	iy / SIOW	Duration	General	Rema	arks		
Date	Ime	Dep	oth	Depth	Diame (mn	eter n)	Depth	⊢rom	IO	(hh:mm)) 1. Position checked with Ground Penetrating				

GINT LIBRARY V10 01.GLB LibVersion: v8 07 001 PriVersion: v8 07 | Log CABLE PERCUSSION LOG - A4P | 1922316 - CHISWELL GREEN.GPJ - v10 01. RSK Environment Ltd. 18 Frogmore Road, Hernel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk, | 22/04/22 - 12:36 | CD7 |

17/03/22

17/03/22

3.00

6.00

-

-

RSK	Used:	Cable percussion	Used:	Dando 2000 M	lark 2	By:	Hutson	By:	By:	AGS
Ê	Method	Inspection pit +	Plant			Drilled	Dave	Logged CDuffield	Checked	
/iron								All dimensions in metres	Scale: 1:50	
ment								5. On completion, borend		ings.
Ľťď								4. No groundwater encou	untered.	ingo
18 Fr								contamination.	evidence of	

0.00

1.20

01:00

Radar, CAT and Genny prior to excavation. 2. Inspection pit hand dug to 1.20m depth.

3. No visual or olfactory evidence of

Contract:							C	Client:					Borehole:		
Ac	ldiso	n Pa	rk, Cl	hiswe	ll Gr	een		McPartland Planning Limited					BH04		
Contract F	Ref:			Start:	15.03	3.22	Ground	Level (m A	OD):	National Gri	d Co-ordinate:	Sheet:			
	1922316 End: 15.03.2		3.22		103.47		E:5128	25.8 N:204716.1		1	of 1				
Sa Depth	mples a	and In-s Type	itu Test	ts esults	Water	Backfill			C	Description	of Strata		Depth (Thick ness)	Material Graphic Legend	
- 0.00-0.50 - - -	1	В					Dark b	prown slightl	y clayey	sandy grave	Ily TOPSOIL. Rare fine roo	ts.	(0.60)		
- - - 1.20-1.70	2	В					subrou	unded GRA	VEL of fl	int.	line to coarse subangt	Jiai lo	(1.80)		
2.00-2.50	3	В											2.40		
2.50-3.00	4	B					Orangi coarse	ish brown s subangula	slightly cl r to round	layey very r ded GRAVE	nedium and coarse sandy L of flint.	fine to	(0.90)		
							Stiff da coarse chalk.	ark brown s and subar	slightly sa ngular to	andy slightly rounded flir	gravelly CLAY. Gravel is t. Low cobble content of fli	fine to nt and	3.30		
- 4.00-4.50 	6	В											4.70		
- - 5.00-6.00 -	7	В					White matrix	mottled off with chalk r	f white h nodules a	nighly weath and black fle	ered structureless CHALK cks. (Grade VI, Dm).	. Clay	- - - - (1.30)		
- - - -						-	Boreho	ole terminat	ed at 6.0	0m depth.			- - 6.00		
													-		
- - - - - - - - -													- - - - - - - - - - - -		
	Doring	Drogram	o ond h	Notor Ob		iona		Chicollin		Prograa					
Date	Time	Bore Bore	s and v ehole epth	Casing Depth	Boreh Diame (mm	ole eter n)	Water Depth	From	To	Duration (hh:mm)	General F	Rema	arks	ing	
15/03/22 15/03/22		4. 6.	50 00	-			-	0.00	1.20	01:00	 Position checked with (Radar, CAT and Genni 2. Inspection pit hand dug 3. No visual or olfactory e 	pround I y prior to to 1.20 vidence	Penetrat excava m depth of	ing tion.	

RSK Env	Method Used:	Inspection pit + Cable percussion	Plant Used:	Dando 2000 Mark 2	Drilled By:	Dave Hutson	Logged CDuffield By:	Checked By: AGS
vironmer							All dimensions in metres	Scale: 1:50
nt Ltd, 18							4. No groundwater encou 5. On completion, boreho	intered. le backfilled with arisings.
ш							3. NO VISUAI OI OIIACIOI Y E	

Contract:								Client:				Boreho	ole:	
Ad	diso	n Pai	rk, Cł	niswe	II Gre	een		M	cPartla	nd Plan	ning Limited			BH05
Contract Re	ef:			Start:	15.03	3.22	Groun	d Level (m A	AOD):	National Gri	d Co-ordinate:	Sheet:		
	1922	316		End:	15.03	3.22		102.92		E:5126	17.2 N:204523.2		1	of 2
San	nples a	and In-s	itu Test	s	er	IJ							Depth	Materia
Depth	No	Type	Re	sults	Wat	Back			D	escription o	of Strata		(Thick	Graphi
0.00-0.50	1	В					Brow	n slightly g	ravelly cla	avey fine an	d medium sandy TOPSC	IL with		<u>x 1/2</u> . <u>x 1/2</u>
							fine r	oots and ro	otlets. Gra	vel is fine ar	nd medium subangular to r	ounded	(0.50)	<u>// · <u>·</u>·// · <u>·</u></u>
0.50-1.00	2	В					Firm	brown mot	tled orang	gish brown	and dark brown slightly	gravelly	- 0.50	<u> </u>
							slight flint.	tly sandy Cl	LAY. Grav	el is fine an	d medium subangular to r	ounded	-	
													(1.50)	
1.20-1.70	3	В											È	
													-	
-													2.00	
2.00-2.50	4	В					Oran	gish brown	clayey fine	e and mediur	m SAND.		(0.50)	
0.50.0.00								· · · ·	<u> </u>		<u> </u>		2.50	÷. · · · · ·
2.50-3.00	5	В					round	gisn brown ded GRAVE	Tine to co EL of flint.	barse sandy	Tine and medium subang	guiar to	(0.50)	.0.,
3 00-3 50	6	в					Oran	aish brown	eliabtly		gravelly fine to coarse	SAND	3.00	
5.00-5.00							Grav	el is fine to o	coarse sub	pangular to r	ounded flint.	OAND.	-	
													[(1.00)	
													- 1 00	
4.00-4.50	7	В					Oran	gish brown	slightly o	clayey fine	to coarse SAND and fi	ne and	4.00	p
							medi	um subangı	ular to rour	nded GRAV	EL of flint		[(1.00)	0.0
														0.0
													5.00	
5.00-5.50	8	В					Brow suba	n clayey ve ngular to ro	ry gravelly unded flint	fine to coars	se SAND. Gravel is fine to as content of flint	coarse	-	
								iguna to ioi					-	
													-	
6 00-6 50	9	в											-	- <i>0</i>
0.00 0.00													- (2.50)	- 0 - - A
													-	
													-	
7.00-7.50	10	В											-	
													7.50	_
							Stiff I	brown slight	ly sandy g	ravelly CLA	Y. Gravel is fine to coarse	angular	-	<u> </u>
_							10100						(1.00)	$\overline{}$
8.00-8.50	11	В											-	- <u> </u>
9 50 0 50	10	Б						a monthland off	fuulaita laial	h hu u u a a tha a sa		iltralay	8.50	- <u>-</u>
8.50-9.50		В					matri	e mottled on x with chalk	nodules a	nly weathere and rare flint.	Grade VI/ Dm).	lity clay	-	0
-													(1.00)	
В	oring l	Progres	s and V	Vater Ob	oservatio	ons		Chisell	ing / Slow	Progress	0	_		
Date	Time	Bore	ehole	Casing	Boreho	ole eter	Water	From	То	Duration	General	Rema	arks	
Depth Depth (mm) Depth (mm) Depth 1. Position checked 15/03/22 5.00 5.00 0.00 1.20 01:00 1. Position checked							1. Position checked with	Ground I	Penetrat	ing				
15/03/22		9.	50	-				0.00	1.20	01.00	2. Inspection pit hand du	g to 1.20	o excava m depth	tion.
											 No visual or olfactory e contamination. 	evidence	of	
											4. No groundwater encou	Intered.	lled with	arisings
														ansings
Method	Inen	oction	nit +	Diar					Drilled	Dava	All dimensions in metres	Scale:	<u>1:50</u>) -
Used: C	able	percu	ussior		 ^{d:} Dar	ndo 2	2000	Mark 2	By:	Hutson	By:	By:	34	AGS

Contract:							C	Client:				Boreho	ole:	
A	Addison Park, Chiswell Green						McPartland Plan				ning Limited			BH05
Contract I	Contract Ref: Start: 15.03.22				Ground	Level (m AC	DD): N	lational Gri	id Co-ordinate:	Sheet:				
1922316 End: 15.03.22						102.92		E:5126	617.2 N:204523.2	2	2	of 2		
Sa	amples a	and In-s	itu Test	ts	ater	kfill			D.		of Churche		Depth	Material
Depth	No	Туре	Re	esults	Ň	Bac			De	escription	of Strata		(Thick ness)	Legend
-							White	mottled off v	white high	ly weathere	ed structureless CHALK	C Silty clay	-	ю Л
- -							(stratu	m copied fro	om 8.50m	from previ	ious sheet)		9.50	
-													-	
-													-	
-													-	
-													-	
-													-	
-													F	
-													-	
-														
-													-	
-													-	
-														
-													-	
-													F	
-													-	
-													-	
-													-	
-													-	
-													-	
-													-	
-													-	
-													-	
-													-	
-													-	
-													-	
-													-	
-													-	
-													-	
- -													-	
-													-	
													-	
	Boring	Progres	s and V	Vater Ob	servati	ons		Chisellin	ig / Slow F	Progress	^		l - :	
Date	Time	Bor	ehole	Casing Depth	Boreh Diame	ole eter	Water Depth	From	То	Duration (hh:mm)	Genera	ai Rema	arks	

GINT LIBRARY V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log CABLE PERCUSSION LOG - A4P | 1922316 - CHISWELL GREEN.GPJ - v10_01. RSK Environment Ltd, 18 Frogmore Road, Heme Hempstead, Hentfordshire, HP3 9RT. Tei: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk, | 22/04/22 - 12:36 | CD7 | Inspection pit + Cable percussion Method Used:

Plant									
Used: Dando 2000 Mark 2									

Plant

	Dr
2	By

Dave

Hutson

All dimensions in metres

Logged CDuffield

By:

Scale:

By:

Checked

1:50

AGS

APPENDIX E LABORATORY CLASSIFICATION TEST RESULTS

ollo.		ST	RUCTU TES	RAL SOILS LTI T REPORT						
Report No.	584798-01 (00)				1774					
Date	07-April-2022	Contract	Addison	Park, Chiswell Green,	St Albans					
Client Address	RSK 18 Frogmore Rd Apsley Hemel Hempstead Hertfordshire HP3 9RT	her Duffield								
Samples su Testing Sta Testing Cor	bmitted by client rted npleted	23-March-2 24-March-2 06-April-20	2022 2022 22	Client Reference Client Order No. Instruction Type	1922316 n/a Written					
UKAS Accre	Asoratory. KAS Accredited Tests 1.10 Particle Size Distribution wet sieve method BS1377:Part 2:1990,clause 9.2 (superseded)*									
* This clause o	f BS1377 is no longer the most	up to date method	due to the pu	blication of ISO17892						
Please Note: Test were un Opinions and	Remaining samples will be dertaken on samples 'as rea l interpretations expressed i	retained for a po ceived' unless o n this report are	eriod of one herwise stat outside the	month from today and wi ed. scope of accreditation for	II then be disposed of . r this laboratory.					
	Structural Soils Ltd 18 F	rogmore Rd Heme	I Hempstead I	HP3 9RT Tel.01442 416661	e-mail dimitris.xirouchakis@soils.co.uk					

TESTING VERIFICATION CERTIFICATE

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **07/04/2022 12:45:09**.

Testing reported after this date is not covered by this Verification Certificate.

500

Approved Signatory Sharon Cairns (Laboratory Manager)

(Head Office) Bristol Laboratory Unit 1A, Princess Street Bedminster Bristol BS3 4AG

Castleford Laboratory The Potteries, Pottery Street Castleford West Yorkshire WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory Anerley Court, Half Moon Lane Hildenborough Tonbridge TN11 9HU

~		Contract:	Job No:
- Contraction of the second se	STRUCTURAL SOILS LTD	Addison Park, Chiswell Green, St Albans	584798

